3,965
Views
65
CrossRef citations to date
0
Altmetric
Review

Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways

&
Pages 81-94 | Published online: 09 Jan 2014

References

  • Hunter T. Signaling – 2000 and beyond. Cell100(1), 113–127 (2000).
  • Ubersax JA, Ferrell JE. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol.8(7), 530–541 (2007).
  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science298(5600), 1912–1934 (2002).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Gatzka M, Walsh CM. Apoptotic signal transduction and T cell tolerance. Autoimmunity40(6), 442–452 (2007).
  • Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signaling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol.7(2), 85–96 (2006).
  • Sirard JC, Vignal C, Dessein R, Chamaillard M. Nod-like receptors: cytosolic watchdogs for immunity against pathogens. PLoS Pathog.3(12), e152 (2007).
  • Morandell S, Stasyk T, Grosstessner-Hain K et al. Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics6(14), 4047–4056 (2006).
  • de la Fuente van Bentem S, Mentzen WI, de la Fuente A, Hirt H. Towards functional phosphoproteomics by mapping differential phosphorylation events in signaling networks. Proteomics8(21), 4453–4465 (2008).
  • White FM. Quantitative phosphoproteomic analysis of signaling network dynamics. Curr. Opin. Biotechnol.19(4), 404–409 (2008).
  • Hattori S, Iida N, Kosako H. Identification of protein kinase substrates by proteomic approaches. Exp. Rev. Proteomics5(3), 497–505 (2008).
  • Thingholm TE, Jensen ON, Larsen MR. Analytical strategies for phosphoproteomics. Proteomics9(6), 1451–1468 (2009).
  • Macek B, Mann M, Olsen JV. Global and site-specific quantitative phosphoproteomics: principles and applications. Annu. Rev. Pharmacol. Toxicol.49, 199–221 (2009).
  • Cohen P, Knebel A. KESTREL: a powerful method for identifying the physiological substrates of protein kinases. Biochem. J.393(Pt 1), 1–6 (2006).
  • Blethrow JD, Glavy JS, Morgan DO, Shokat KM. Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc. Natl Acad. Sci. USA105(5), 1442–1447 (2008).
  • Fukunaga R, Hunter T. Identification of MAPK substrates by expression screening with solid-phase phosphorylation. Methods Mol. Biol.250, 211–236 (2004).
  • Mok J, Im H, Snyder M. Global identification of protein kinase substrates by protein microarray analysis. Nat. Protoc.4(12), 1820–1827 (2009).
  • Görg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics4(12), 3665–3685 (2004).
  • Oh P, Li Y, Yu J et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature429(6992), 629–635 (2004).
  • Stasyk T, Dubrovska A, Lomnytska M et al. Phosphoproteome profiling of transforming growth factor (TGF)-β signaling: abrogation of TGFβ1-dependent phosphorylation of transcription factor-II-I (TFII-I) enhances cooperation of TFII-I and Smad3 in transcription. Mol. Biol. Cell16(10), 4765–4780 (2005).
  • Agrawal GK, Thelen JJ. Large scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Mol. Cell. Proteomics5(11), 2044–2059 (2006).
  • Uuml;nlü M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis18(11), 2071–2077 (1997).
  • Viswanathan S, Ünlü M, Minden JS. Two-dimensional difference gel electrophoresis. Nat. Protoc.1(3), 1351–1358 (2006).
  • Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal. Bioanal. Chem.382(3), 669–678 (2005).
  • Lilley KS, Friedman DB. All about DIGE: quantification technology for differential-display 2D-gel proteomics. Exp. Rev. Proteomics1(4), 401–409 (2004).
  • Kondo T, Hirohashi S. Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics. Nat. Protoc.1(6), 2940–2956 (2006).
  • Stasyk T, Morandell S, Bakry R et al. Quantitative detection of phosphoproteins by combination of two-dimensional difference gel electrophoresis and phosphospecific fluorescent staining. Electrophoresis26(14), 2850–2854 (2005).
  • Kosako H, Yamaguchi N, Aranami C et al. Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat. Struct. Mol. Biol.16(10), 1026–1035 (2009).
  • Collins MO, Yu L, Coba MP et al. Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem.280(7), 5972–5982 (2005).
  • Dubrovska A, Souchelnytskyi S. Efficient enrichment of intact phosphorylated proteins by modified immobilized metal-affinity chromatography. Proteomics5(18), 4678–4683 (2005).
  • Machida M, Kosako H, Shirakabe K et al. Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis. FEBS J.274(6), 1576–1587 (2007).
  • Ueda K, Kosako H, Fukui Y, Hattori S. Proteomic identification of Bcl2-associated athanogene 2 as a novel MAPK-activated protein kinase 2 substrate. J. Biol. Chem.279(40), 41815–41821 (2004).
  • Hong Z, Zhang QY, Liu J et al. Phosphoproteome study reveals Hsp27 as a novel signaling molecule involved in GDNF-induced neurite outgrowth. J. Proteome Res.8(6), 2768–2787 (2009).
  • Morales MA, Watanabe R, Dacher M et al. Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc. Natl Acad. Sci. USA107(18), 8381–8386 (2010).
  • Stasyk T, Schiefermeier N, Skvortsov S et al. Identification of endosomal epidermal growth factor receptor signaling targets by functional organelle proteomics. Mol. Cell. Proteomics6(5), 908–922 (2007).
  • Tang W, Deng Z, Oses-Prieto JA et al. Proteomics studies of brassinosteroid signal transduction using prefractionation and two-dimensional DIGE. Mol. Cell. Proteomics7(4), 728–738 (2008).
  • Tang W, Kim TW, Oses-Prieto JA et al. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science321(5888), 557–560 (2008).
  • Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv. Cancer Res.74, 49–139 (1998).
  • Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev.22(2), 153–183 (2001).
  • Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors24(1), 21–44 (2006).
  • Eblen ST, Kumar NV, Shah K et al. Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs. J. Biol. Chem.278(17), 14926–14935 (2003).
  • Allen JJ, Li M, Brinkworth CS et al. A semisynthetic epitope for kinase substrates. Nat. Methods4(6), 511–516 (2007).
  • Popescu SC, Popescu GV, Bachan S et al. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev.23(1), 80–92 (2009).
  • Lewis TS, Hunt JB, Aveline LD et al. Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol. Cell6(6), 1343–1354 (2000).
  • Roberts EC,Hammond K, Traish AM, Resing KA, Ahn NG. Identification of G2/M targets for the MAP kinase pathway by functional proteomics. Proteomics6(16), 4541–4553 (2006).
  • Kosako H, Imamoto N. Phosphorylation of nucleoporins: signal transduction-mediated regulation of their interaction with nuclear transport receptors. Nucleus1(4), 309–313 (2010).
  • Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-translational modifications with mass spectrometry. Nat. Methods4(10), 798–806 (2007).
  • Andersson L, Porath J. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal. Biochem.154(1), 250–254 (1986).
  • Nuwaysir LM, Stults JT. Electrospray ionization mass spectrometry of phosphopeptides isolated by on-line immobilized metal-ion affinity chromatography. J. Am. Soc. Mass Spectrom.4(8), 662–667 (1993).
  • Xhou W, Merrick BA, Khaledi MG, Tomer KB. Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom.11(4), 273–282 (2000).
  • Muszynska G, Dobrowolska G, Medin A, Ekman P, Porath JO. Model studies on iron(III) ion affinity chromatography. II. Interaction of immobilized iron(III) ions with phosphorylated amino acids, peptides and proteins. J. Chromatogr.604(1), 19–28 (1992).
  • Posewitz MC, Tempst P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem.71(14), 2883–2892 (1999).
  • Ficarro SB, McCleland ML, Stukenberg PT et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.20(3), 301–305 (2002).
  • Chi YH, Haller K, Ward MD, Semmes OJ, Li Y, Jeang KT. Requirements for protein phosphorylation and the kinase activity of polo-like kinase 1 (Plk1) for the kinetochore function of mitotic arrest deficiency protein 1 (Mad1). J. Biol. Chem.283(51), 35834–35844 (2008).
  • Lyons TR, Thorburn J, Ryan PW, Thorburn A, Anderson SM, Kassenbrock CK. Regulation of the pro-apoptotic scaffolding protein POSH by Akt. J. Biol. Chem.282(30), 21987–21997 (2007).
  • Kirkland PA, Gil MA, Karadzic IM, Maupin-Furlow JA. Genetic and proteomic analyses of a proteasome-activating nucleotidase A mutant of the haloarchaeon Haloferax volcanii. J. Bacteriol.190(1), 193–205 (2008).
  • Nagano K, Shinkawa T, Mutoh H et al. Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics9(10), 2861–2874 (2009).
  • Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem.76(14), 3935–3943 (2006).
  • Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics4(7), 873–886 (2005).
  • Kweon HK, Håkansson K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal. Chem.78(6), 1743–1749 (2006).
  • Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol. Cell. Proteomics6(6), 1103–1109 (2007).
  • Beausoleil SA, Jedrychowski M, Schwartz D et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl Acad. Sci. USA101(33), 12130–12135 (2004).
  • Gruhler A, Olsen JV, Mohammed S et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics4(3), 310–327 (2005).
  • Olsen JV, Blagoev B, Gnad F et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell127(3), 635–648 (2006).
  • Villén J, Beausoleil SA, Gerber SA, Gygi SP. Large-scale phosphorylation analysis of mouse liver. Proc. Natl Acad. Sci. USA104(50), 1488–1493 (2007).
  • Dephoure N, Zhou C, Villén J et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA105(31), 10762–10767 (2008).
  • Olsen JV, Vermeulen M, Santamaria A et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal.3(104), ra3 (2010).
  • McNulty DE, Annan RS. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol. Cell. Proteomics7(5), 971–980 (2008).
  • Pandey A, Podtelejnikov AV, Blagoev B, Bustelo XR, Mann M, Lodish HF. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl Acad. Sci. USA97(1), 179–184 (2000).
  • Nagano K, Itagaki C, Izumi T et al. Rb plays a role in survival of Abl-dependent human tumor cells as a downstream effector of Abl tyrosine kinase. Oncogene25(4), 493–502 (2006).
  • Matsumoto M, Oyamada K, Takahashi H, Sato T, Hatakeyama S, Nakayama KI. Large-scale proteomic analysis of tyrosine-phosphorylation induced by T-cell receptor or B-cell receptor activation reveals new signaling pathways. Proteomics9(13), 3549–3563 (2009).
  • Rush J, Moritz A, Lee KA et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol.23(1), 94–101 (2005).
  • Rikova K, Guo A, Zeng Q et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell131(6), 1190–1203 (2007).
  • Matsuoka S, Ballif BA, Smogorzewska A et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science316(5828), 1160–1166 (2007).
  • Olsen JV, Mann M. Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc. Natl Acad. Sci. USA101(37), 13417–13422 (2004).
  • Schroeder MJ, Shabanowitz J, Schwartz JC, Hunt DF, Coon JJ. A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal. Chem.76(13), 3590–3598 (2004).
  • Palumbo AM, Reid GE. Evaluation of gas-phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation-MS/MS and MS3. Anal. Chem.80(24), 9735–9747 (2008).
  • Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl Acad. Sci. USA101(26), 9528–9533 (2004).
  • Aguiar M, Haas W, Beausoleil SA, Rush J, Gygi SP. Gas-phase rearrangements do not affect site localization reliability in phosphoproteomics data sets. J. Proteome Res.9(6), 3103–3107 (2010).
  • Mischerikow N, Altelaar AF, Navarro JD, Mohammed S, Heck A. Comparative assessment of site assignments in CID and ETD spectra of phosphopeptides discloses limited relocation of phosphate groups. Mol. Cell. Proteomics9(10), 2140–2148 (2010).
  • Zubarev RA, Horn DM, Fridriksson EK et al. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem.72(3), 563–573 (2000).
  • Stensballe A, Jensen ON, Olsen JV, Haselmann KF, Zubarev RA. Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun. Mass Spectrom.14(19), 1793–1800 (2000).
  • Chi A, Huttenhower C, Geer LY et al. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl Acad. Sci. USA104(7), 2193–2198 (2007).
  • Håkansson K, Cooper HJ, Emmett MR, Costello CE, Marshall AG, Nilsson CL. Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information. Anal. Chem.73(18), 4530–4536 (2001).
  • Mirgorodskaya E, Roepstorff P, Zubarev RA. Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal. Chem.71(20), 4431–4436 (1999).
  • Udeshi ND, Shabanowitz J, Hunt DF, Rose KL. Analysis of proteins and peptides on a chromatographic timescale by electron-transfer dissociation MS. FEBS J.274(24), 6269–6276 (2007).
  • Sweet SM, Bailey CM, Cunningham DL, Heath JK, Cooper HJ. Large scale localization of protein phosphorylation by use of electron capture dissociation mass spectrometry. Mol. Cell. Proteomics8(5), 904–912 (2009).
  • Good DM, Wirtala M, McAlister GC, Coon JJ. Performance characteristics of electron transfer dissociation mass spectrometry. Mol. Cell. Proteomics6(11), 1942–1951 (2007).
  • Swaney DL, McAlister GC, Coon JJ. Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat. Methods5(11), 959–964 (2008).
  • Swaney DL, Wenger CD, Thomson JA, Coon JJ. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proc. Natl Acad. Sci. USA106(4), 995–1000 (2009).
  • Beausoleil SA, Villén J, Gerber SA, Rush J, Gygi SP. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol.24(10), 1285–1292 (2006).
  • Bailey CM, Sweet SM, Cunningham DL, Zeller M, Heath JK, Cooper HJ. SLoMo: automated site localization of modifications from ETD/ECD mass spectra. J. Proteome Res.8(4), 1965–1971 (2009).
  • Lu P, Vogel C, Wang R, Yao X, Marcotte EM. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol.25(1), 117–124 (2007).
  • Vogel C, Marcotte EM. Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data. Nat. Protoc.3(9), 1444–1451 (2008).
  • Griffin NM, Yu J, Long F et al. Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat. Biotechnol.28(1), 83–89 (2010).
  • Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol. Cell. Proteomics5(1), 144–156 (2006).
  • Oda Y, Huang K, Cross FR, Cowburn D, Chait BT. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl Acad. Sci. USA96(12), 6591–6596 (1999).
  • Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol.1(5), 252–262 (2005).
  • Li XJ, Yi EC, Kemp CJ, Zhang H, Aebersold R. A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry. Mol. Cell. Proteomics4(9), 1328–1340 (2005).
  • Bellew M, Coram M, Fitzgibbon M et al. A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics22(15), 1902–1909 (2006).
  • Palagi PM, Walther D, Quadroni M et al. MSight: an image analysis software for liquid chromatography-mass spectrometry. Proteomics5(9), 2381–2384 (2005).
  • Kohlbacher O, Reinert K, Gröpl C et al. TOPP – the OpenMS proteomics pipeline. Bioinformatics23(2), e191–e197 (2007).
  • Jaffe JD, Mani DR, Leptos KC, Church GM, Gillette MA, Carr SA. PEPPeR, a platform for experimental proteomic pattern recognition. Mol. Cell. Proteomics5(10), 1927–1941 (2006).
  • Mueller LN, Rinner O, Schmidt A et al. SuperHirn – a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics7(19), 3470–3480 (2007).
  • Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol.26(12), 1367–1372 (2008).
  • Mueller LN, Brusniak MY, Mani DR, Aebersold R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J. Proteome Res.7(1), 51–61 (2008).
  • Old WM, Shabb JB, Houel S et al. Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol. Cell34(1), 115–131 (2009).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17(10), 994–999 (1999).
  • Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics1(5), 376–386 (2002).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3(12), 1154–1169 (2004).
  • Thompson A, Schäfer J, Kuhn K et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem.75(8), 1895–1904 (2003).
  • Mann M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol.7(12), 952–958 (2006).
  • Ishihama Y, Sato T, Tabata T et al. Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat. Biotechnol.23(5), 617–621 (2005).
  • Krüger M, Moser M, Ussar S et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell134(2), 353–364 (2008).
  • Trinidad JC, Thalhammer A, Specht CG et al. Quantitative analysis of synaptic phosphorylation and protein expression. Mol. Cell. Proteomics7(4), 684–696 (2008).
  • Zhang Y, Wolf-Yadlin A, Ross PL et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell. Proteomics4(9), 1240–1250 (2005).
  • Wang Z, Gucek M, Hart GW. Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc. Natl Acad. Sci. USA105(37), 13793–13798 (2008).
  • Nabetani T, Kim YJ, Watanabe M, Ohashi Y, Kamiguchi H, Hirabayashi Y. Improved method of phosphopeptides enrichment using biphasic phosphate-binding tag/C18 tip for versatile analysis of phosphorylation dynamics. Proteomics9(24), 5525–5533 (2009).
  • Nilsson CL, Dillon R, Devakumar A et al. Quantitative phosphoproteomic analysis of the STAT3/IL-6/HIF1α signaling network: an initial study in GSC11 glioblastoma stem cells. J. Proteome Res.9(1), 430–443 (2010).
  • Dayon L, Pasquarello C, Hoogland C, Sanchez JC, Scherl A. Combining low- and high-energy tandem mass spectra for optimized peptide quantification with isobaric tags. J. Proteomics73(4), 769–777 (2010).
  • Gnad F, Ren S, Cox J et al. PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol.8(11), R250 (2007).
  • Linding R, Jensen LJ, Ostheimer GJ et al. Systematic discovery of in vivo phosphorylation networks. Cell129(7), 1415–1426 (2007).
  • Han MY, Kosako H, Watanabe T, Hattori S. Extracellular signal-regulated kinase/mitogen-activated protein kinase regulates actin organization and cell motility by phosphorylating the actin cross-linking protein EPLIN. Mol. Cell. Biol.27(23), 8190–8204 (2007).
  • Kinoshita-Kikuta E, Aoki Y, Kinoshita E, Koike T. Label-free kinase profiling using phosphate affinity polyacrylamide gel electrophoresis. Mol. Cell. Proteomics6(2), 356–366 (2007).
  • Kosako H. Phos-tag Western blotting for detecting stoichiometric protein phosphorylation in cells. Nat. Protoc. DOI: 10.1038/nprot.2009.170 (2009) (Epub ahead of print).
  • Cox DM, Zhong F, Du M, Duchoslav E, Sakuma T, McDermott JC. Multiple reaction monitoring as a method for identifying protein posttranslational modifications. J. Biomol. Tech.16(2), 83–90 (2005).
  • Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl Acad. Sci. USA104(14), 5860–5865 (2007).
  • Unwin RD, Griffiths JR, Whetton AD. A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS). Nat. Protoc.4(6), 870–877 (2009).
  • Tong J, Taylor P, Peterman SM, Prakash A, Moran MF. Epidermal growth factor receptor phosphorylation sites Ser991 and Tyr998 are implicated in the regulation of receptor endocytosis and phosphorylations at Ser1039 and Thr1041. Mol. Cell. Proteomics8(9), 2131–2144 (2009).
  • Johnson RP, El-Yazbi AF, Hughes MF et al. Identification and functional characterization of protein kinase A-catalyzed phosphorylation of potassium channel Kv1.2 at serine 449. J. Biol. Chem.284(24), 16562–16574 (2009).
  • Ciccimaro E, Hanks SK, Yu KH, Blair IA. Absolute quantification of phosphorylation on the kinase activation loop of cellular focal adhesion kinase by stable isotope dilution liquid chromatography/mass spectrometry. Anal. Chem.81(9), 3304–3313 (2009).
  • Traweger A, Wiggin G, Taylor L, Tate SA, Metalnikov P, Pawson T. Protein phosphatase 1 regulates the phosphorylation state of the polarity scaffold Par-3. Proc. Natl Acad. Sci. USA105(30), 10402–10407 (2008).
  • Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods4(3), 231–237 (2007).
  • Pan C, Olsen JV, Daub H, Mann M. Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol. Cell. Proteomics8(12), 2796–2808 (2009).
  • Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol.11(6), 427–439 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.