367
Views
52
CrossRef citations to date
0
Altmetric
Perspective

How and why does the proteome respond to microgravity?

, , , &
Pages 13-27 | Published online: 09 Jan 2014

References

  • White RJ, Averner M. Humans in space. Nature409(6823), 1115–1118 (2001).
  • Fong K. The next small step. BMJ329(7480), 1441–1444 (2004).
  • D’Aunno DS, Dougherty AH, DeBlock HF, Meck JV. Effect of short- and long-duration spaceflight on QTc intervals in healthy astronauts. Am. J. Cardiol.91, 494–497 (2003).
  • Convertino VA. Status of cardiovascular issues related to space flight: implications for future research directions. Respir. Physiol. Neurobiol.169(Suppl. 1), S34–S37 (2009).
  • Shibata S, Perhonen M, Levine BD. Supine cycling plus volume loading prevent cardiovascular deconditioning during bed rest. J. Appl. Physiol.108(5), 1177–1186 (2010).
  • Hargens AR, Richardson S. Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir. Physiol. Neurobiol.169(Suppl. 1), S30–S33 (2009).
  • Iwasaki K, Levine BD, Zhang R et al. Human cerebral autoregulation before, during and after spaceflight. J. Physiol.579(Pt 3), 799–810 (2007).
  • Fitts RH, Riley DR, Widrick JJ. Functional and structural adaptations of skeletal muscle to microgravity. J. Exp. Biol.204(Pt 18), 3201–3208 (2001).
  • Young LR, Oman CM, Merfeld D et al. Spatial orientation and posture during and following weightlessness: human experiments on Spacelab Life Sciences 1. J. Vestib. Res.3(3), 231–239 (1993).
  • Dijk DJ, Neri DF, Wyatt JK et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am. J. Physiol. Regul. Integr. Comp. Physiol.281(5), R1647–R1664 (2001).
  • Sonnenfeld G. The immune system in space and microgravity. Med. Sci. Sports Exerc.34(12), 2021–2027 (2002).
  • Conza N, Mainil-Varlet P, Rieser F et al. Tissue engineering in space. J. Gravit. Physiol.8(1), P17–P20 (2001).
  • Freed LE, Langer R, Martin I, Pellis NR, Vunjak-Novakovic G. Tissue engineering of cartilage in space. Proc. Natl Acad. Sci. USA94(25), 13885–13890 (1997).
  • Grimm D, Bauer J, Ulbrich C et al. Different responsiveness of endothelial cells to vascular endothelial growth factor and basic fibroblast growth factor added to culture media under gravity and simulated microgravity. Tissue Eng. Part A16(5), 1559–1573 (2010).
  • Lelkes PI, Galvan DL, Hayman GT et al. Simulated microgravity conditions enhance differentiation of cultured PC12 cells towards the neuroendocrine phenotype. In Vitro Cell Dev. Biol. Anim.34(4), 316–325 (1998).
  • Siamwala JH, Reddy SH, Majumder S et al. Simulated microgravity perturbs actin polymerization to promote nitric oxide-associated migration in human immortalized EAhy926 cells. Protoplasma242(1–4), 3–12 (2010).
  • Grimm D, Bauer J, Kossmehl P et al. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J.16(6), 604–606 (2002).
  • Kumei Y, Morita S, Katano H et al. Microgravity signal ensnarls cell adhesion, cytoskeleton, and matrix proteins of rat osteoblasts: osteopontin, CD44, osteonectin, and a-tubulin. Ann. NY Acad. Sci.1090, 311–317 (2006).
  • Plett PA, Abonour R, Frankovitz SM, Orschell CM. Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells. Exp. Hematol.32(8), 773–781 (2004).
  • Bauer J, Grimm D. Effect of gravitational stress on major cell functions: growth differentiation, apoptosis, adhesion, migration. In: Cell Mechanochemistry, Biological Systems and Factors Inducing Mechanical Stress, Such as Light Pressure and Gravity . Monici M (Ed.). Transworld Research Network, Kerala, India (2010).
  • Hughes-Fulford M. The role of signaling pathways in osteoblast gravity perception. J. Gravit. Physiol.9(1), P257–P260 (2002).
  • Obermaier C, Jankowski V, Schmutzler C et al. Free-flow isoelectric focusing of proteins remaining in cell fragments following sonication of thyroid carcinoma cells. Electrophoresis26(11), 2109–2116 (2005).
  • Pietsch J, Kussian R, Sickmann A et al. Application of free-flow IEF to identify protein candidates changing under microgravity conditions. Proteomics10(5), 904–913 (2010).
  • Leroy B, Rosier C, Erculisse V, Leys N, Mergeay M, Wattiez R. Differential proteomic analysis using isotope-coded protein-labeling strategies: comparison, improvements and application to simulated microgravity effect on Cupriavidus metallidurans CH34. Proteomics10(12), 2281–2291 (2010).
  • Mastroleo F, Van Houdt R, Leroy B et al. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME J.3(12), 1402–1419 (2009).
  • Mastroleo F, Leroy B, Van Houdt R, s’Heeren C, Mergeay M, Hendrickx L. Shotgun proteome analysis of Rhodospirillum rubrum S1H: integrating data from gel-free and gel-based peptides fractionation methods. J. Proteome Res.8(5), 2530–2541 (2009).
  • Leys N, Hendrickx L, De Boever P, Baatout S, Mergeay M. Space-flight effects on bacterial physiology. J. Biol. Regul. Homest. Agents18(2), 193–199 (2004).
  • Leys N, Baatout S, Rosier C et al. The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station. Antonie Van Leeuwenhoek96(2), 227–245 (2009).
  • Wilson JW, Ott CM, Höner zu Bentrup K et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl Acad. Sci. USA104(41), 16299–16304 (2007).
  • Sarkar P, Sarkar S, Ramesh V et al. Proteomic analysis of mouse hypothalamus under simulated microgravity. Neurochem. Res.33(11), 2335–2341 (2008).
  • Sarkar P, Sarkar S, Ramesh V et al. Proteomic analysis of mice hippocampus in simulated microgravity environment. J. Proteome Res.5(3), 548–553 (2006).
  • Lewis ML, Cubano LA, Zhao B et al. cDNA microarray reveals altered cytoskeletal gene expression in space-flown leukemic T lymphocytes (Jurkat). FASEB J.15(10), 1783–1785 (2001).
  • Sciola L, Cogoli-Greuter M, Cogoli A, Spano A, Pippia P. Influence of microgravity on mitogen binding and cytoskeleton in Jurkat cells. Adv. Space Res.24(6), 801–805 (1999).
  • Infanger M, Ulbrich C, Baatout S et al. Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. J. Cell. Biochem.101(6), 1439–1455 (2007).
  • Uva BM, Masini MA, Sturla M et al. Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res.934(2), 132–139 (2002).
  • Wang H, Zheng HQ, Sha W, Zeng R, Xia QC. A proteomic approach to analysing responses of Arabidopsis thaliana callus cells to clinostat rotation. J. Exp. Bot.57(4), 827–835 (2006).
  • Martzivanou M, Babbick M, Cogoli-Greuter M, Hampp R. Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. Protoplasma229(2–4), 155–162 (2006).
  • Barjaktarović Z, Nordheim A, Lamkemeyer T, Fladerer C, Madlung J, Hampp R. Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J. Exp. Bot.58(15–16), 4357–4363 (2007).
  • Barjaktarović Z, Schütz W, Madlung J, Fladerer C, Nordheim A, Hampp R. Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana. J. Exp. Bot.60(3), 779–789 (2009).
  • Joo JH, Bae YS, Lee JS. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol.126(3), 1055–1060 (2001).
  • Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol.127(1), 159–172 (2001).
  • Nichols HL, Zhang N, Wen X. Proteomics and genomics of microgravity. Physiol. Genomics26(3), 163–171 (2006).
  • Cogoli A, Tschopp A, Fuchs-Bislin P. Cell sensitivity to gravity. Science225(4658), 228–230 (1984).
  • Cogoli A, Tschopp A. Lymphocyte reactivity during spaceflight. Immunol. Today6, 1–4 (1985).
  • Risso A, Tell G, Vascotto C et al. Activation of human T lymphocytes under conditions similar to those that occur during exposure to microgravity: a proteomics study. Proteomics5(7), 1827–1837 (2005).
  • Crabtree GR, Clipstone NA. Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu. Rev. Biochem.63, 1045–1083 (1994).
  • Cogoli-Greuter M, Lovis P, Vadrucci S. Signal transduction in T cells: an overview. J. Gravit. Physiol.11(2), P53–P56 (2004).
  • Schwarzenberg M, Cossu G, Cogoli-Greuter M, Meloni MA, Pippia P, Cogoli A. Gravitational effects on the response to different stimulatory signals in T cells. J. Gravit. Physiol.7(2), P9–P11 (2000).
  • Maccarrone M, Battista N, Meloni M et al. Creating conditions similar to those that occur during exposure of cells to microgravity induces apoptosis in human lymphocytes by 5-lipoxygenase-mediated mitochondrial uncoupling and cytochromec release. J. Leukoc. Biol.73(4), 472–481 (2003).
  • Grimm D, Bauer J, Hofstädter F, Riegger GA, Kromer EP. Characteristics of multicellular spheroids formed by primary cultures of human thyroid tumor cells. Thyroid 1997 7(6), 859–865 (1997).
  • Grimm D, Bauer J, Kromer E, Steinbach P, Riegger G, Hofstädter F. Human follicular and papillary thyroid carcinoma cells interact differently with human venous endothelial cells. Thyroid5(3), 155–164 (1995).
  • Grosse J, Grimm D, Westphal K et al. Radiolabeled annexin V for imaging apoptosis in radiated human follicular thyroid carcinomas – is an individualized protocol necessary? Nucl. Med. Biol.36(1), 89–98 (2009).
  • Pohl F, Grosse J, Grimm D et al. Changes of apoptosis, p53, and bcl-2 by irradiation in poorly differentiated thyroid carcinoma cell lines: a prognostic marker for the prospect of therapeutic success? Thyroid20(2), 159–166 (2010).
  • Grimm D, Kossmehl P, Shakibaei M et al. Effects of simulated microgravity on thyroid carcinoma cells. J. Gravit. Physiol.9(1), P253–P256 (2002).
  • Infanger M, Kossmehl P, Shakibaei M et al. Longterm conditions of mimicked weightlessness influences the cytoskeleton in thyroid cells. J. Gravit. Physiol.11(2), P169–P172 (2004).
  • Cotrupi S, Ranzani D, Maier JA. Impact of modeled microgravity on microvascular endothelial cells. Biochim. Biophys. Acta.1746(2), 163–168 (2005).
  • Carlsson SI, Bertilaccio MT, Ascari I, Bradamante S, Maier JA. Modulation of human endothelial cell behaviour in simulated microgravity. J. Gravit. Physiol.9(1), P273–P274 (2002).
  • Ulbrich C, Westphal K, Baatout et al. Effects of basic fibroblast growth factor on endothelial cells under conditions of simulated microgravity. J. Cell. Biochem.104(4), 1324–1341 (2008).
  • Infanger M, Kossmehl P, Shakibaei M et al. Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: impact of vascular endothelial growth factor. Apoptosis11(5), 749–764 (2006).
  • Versari S, Villa A, Bradamante S, Maier JA. Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. Biochim. Biophys. Acta.1773(11), 1645–1652 (2007).
  • Buravkova LB, Romanov YA. The role of cytoskeleton in cell changes under condition of simulated microgravity. Acta Astronaut.48(5–12), 647–650 (2001).
  • Cogoli-Greuter M, Spano A, Sciola L, Pippia P, Cogoli A. Influence of microgravity on mitogen binding, motility and cytoskeleton patterns of T lymphocytes and Jurkat cells. Experiments on sounding rockets. J. J. Aerospace Env. Med.35(2), 27–39 (1998).
  • Cogoli-Greuter M, Bechler B, Lorenzi et al. Mitogen binding, cytoskeleton patterns and motility of T lymphocytes in microgravity. In: Life Sciences Experiments Performed on Sounding Rockets (1985–1994). Cogoli A, Friedrich U, Mesland D, Demets R (Eds). European Space Agency SP 1206, 59–70 (1997).
  • Cogoli-Greuter M, Cogoli A, Spano A et al. Influence of microgravity on mitogen binding and cytoskeleton in Jurkat cells: experiment on MAXUS-2. Presented at: 13th ESA Symposium on European Rocket and Balloon Programmes and related Research. Oland, Sweden, 26–29 May 1997.
  • Sciola L, Cogoli-Greuter M, Cogoli A, Spano A, Pippia P. Influence of microgravity on mitogen binding and cytoskeleton in Jurkat cells. Adv. Space Res.24(6), 801–805 (1999).
  • Uva BM, Strollo F, Ricci F, Pastorino M, Mason JI, Masini MA. Morpho-functional alterations in testicular and nervous cells submitted to modelled microgravity. J. Endocrinol. Invest.28(11 Suppl. Proceedings), 84–91 (2005).
  • Strollo F, Masini MA, Pastorino M et al. Microgravity-induced alterations in cultured testicular cells. J. Gravit. Physiol.11(2), P187–P188 (2004).
  • Lewis ML. The cytoskeleton, apoptosis, and gene expression in T lymphocytes and other mammalian cells exposed to altered gravity. Adv. Space Biol. Med.8, 77–128 (2002).
  • Schatten H, Lewis ML, Chakrabarti A. Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut.49(3–10), 399–418 (2001).
  • Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J.12(11), 1007–1018 (1998).
  • Vassy J, Portet S, Beil M et al. The effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF-7. FASEB J.15(6), 1104–1106 (2001).
  • Li J, Zhang S, Chen J, Du T, Wang Y, Wang Z. Modeled microgravity causes changes in the cytoskeleton and focal adhesions, and decreases in migration in malignant human MCF-7 cells. Protoplasma238(1–4), 23–33 (2009).
  • Hughes-Fulford M. Physiological effects of microgravity on osteoblast morphology and cell biology. Adv. Space Biol. Med.8, 129–157 (2002).
  • Guignandon A, Lafage-Proust MH, Usson Y et al. Cell cycling determines integrin-mediated adhesion in osteoblastic ROS 17/2.8 cells exposed to space-related conditions. FASEB J.15(11), 2036–2038 (2001).
  • Hughes-Fulford M, Lewis ML. Effects of microgravity on osteoblast growth activation. Exp. Cell Res.224(1), 103–109 (1996).
  • Cancedda R, Muraglia A. Osteogenesis in altered gravity. Adv. Space Biol. Med.8, 159–176 (2002).
  • Hughes-Fulford M. Signal transduction and mechanical stress. Sci. STKE.2004(249), re12 (2004).
  • Carmeliet G, Vico L, Bouillon R. Space flight: a challenge for normal bone homeostasis. Crit. Rev. Eukaryot. Gene Expr.11(1–3), 131–144 (2001).
  • Vico L, Alexandre C. Microgravity and bone adaptation at the tissue level. J. Bone Miner. Res.7(Suppl. 2), S445–S447 (1992).
  • Tamma R, Colaianni G, Camerino C et al. Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J.23(8), 549–554 (2009).
  • Monici M, Fusi F, Paglierani M et al. Modeled gravitational unloading triggers differentiation and apoptosis in preosteoclastic cells. J. Cell. Biochem.98(1), 65–80 (2006).
  • Rösner H, Wassermann T, Möller W, Hanke W. Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. Protoplasma229(2–4), 225–234 (2006).
  • Meyers VE, Zayzafoon M, Douglas JT, McDonald JM. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J. Bone Miner. Res.20(10), 1858–1866 (2005).
  • Versari S, Villa A, Helder MN, Doulabi BZ, van Loon J, Bradamante S. Effects of gravity on proliferation and differentiation of adipose tissue-derived stem cells. J. Gravit. Physiol.14(1), P127–P128 (2007).
  • Ulbrich C, Westphal K, Pietsch J et al. Characterization of human chondrocytes exposed to simulated microgravity. Cell. Physiol. Biochem.25(4–5), 551–560 (2010).
  • Marrero B, Messina JL, Heller R. Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma. In Vitro Cell Dev. Biol. Anim.45(9), 523–534 (2009).
  • Ingber D. How cells (might) sense microgravity. FASEB J.13(Suppl.), S3–S15 (1999).
  • Lambert ChA, Nusgens BV, Lapiere ChM. Mechano-sensing and mechano-reaction of soft connective tissue cells. Adv. Space Res.21(8–9), 1081–1091 (1998).
  • Loesberg WA, Walboomers XF, van Loon JJ, Jansen JA. The effect of combined hypergravity and micro-grooved surface topography on the behaviour of fibroblasts. Cell. Motil. Cytoskeleton63(7), 384–394 (2006).
  • Loesberg WA, Walboomers XF, Bronkhorst EM, van Loon JJ, Jansen JA. The effect of combined simulated microgravity and microgrooved surface topography on fibroblasts. Cell. Motil. Cytoskeleton64(3), 174–185 (2007).
  • Basile V, Romano G, Fusi F, Monici M. Comparison between the effects of hypergravity and photomechanical stress on cells producing ECM. Microgravity Sci. Technol.21, 151–157 (2009).
  • Moes MJA, Bijvelt JJ, Boonstra J. Actin dynamics in mouse fibroblasts in microgravity. Microgravity Sci. Technol.19(5,6), 180–183 (2007).
  • Nusgens B, Lambert C, Lapière CM. Signaling through rho GTPases in microgravity (rho signaling) on ISS (Soyuz TMA-1) Belgian soyuz mission ‘odissea’. Microgravity Sci. Technol.19(5,6), 184–186 (2007).
  • Hatton JP, Gaubert F, Cazenave JP, Schmitt D. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T cells. J. Cell. Biochem.87(1), 39–50 (2002).
  • Schmitt DA, Hatton JP, Emond C et al. The distribution of protein kinase C in human leukocytes is altered in microgravity. FASEB J.10(14), 1627–1634 (1996).
  • Ullrich O, Huber K, Lang K. Signal transduction in cells of the immune system in microgravity. Cell. Commun. Signal.6, 9 (2008).
  • Boonyaratanakornkit JB, Cogoli A, Li CF et al. Key gravity-sensitive signaling pathways drive T cell activation. FASEB J.19(14), 2020–2022 (2005).
  • Dieriks B, De Vos W, Meesen G et al. High content analysis of human fibroblast cell cultures after exposure to space radiation. Radiation Res.172(4), 423–436 (2009).
  • Grimm D, Infanger M, Westphal K et al. A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness. Tissue Eng. Part A15(8), 2267–2275 (2009).
  • Ingram M, Techy GB, Saroufeem R et al. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell Dev. Biol. Anim.33(6), 459–466 (1997).
  • Ingram M, Techy G, Ward B et al. Tissue engineered tumor models. Biotech. Histochem.85(4), 213–229 (2010).
  • Unsworth BR, Lelkes PI. Growing tissues in microgravity. Nat. Med.4(8), 901–907 (1998).
  • Papaseit C, Pochon N, Tabony J. Microtubule self-organization is gravity-dependent. Proc. Natl Acad. Sci. USA97(15), 8364–8368 (2000).
  • Seo Y, Lee K, Park K, Bae K, Choi I. A proteomic assessment of muscle contractile alterations during unloading and reloading. J. Biochem.139(1), 71–80 (2006).
  • Infanger M, Schmidt O, Kossmehl P, Grad S, Ertel W, Grimm D. Vascular endothelial growth factor serum level is strongly enhanced after burn injury and correlated with local and general tissue edema. Burns30(4), 305–311 (2004).
  • Wilson JW, Ott CM, Quick L et al. Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PLoS One3(12), e3923 (2008).
  • Klaus DM, Howard HN. Antibiotic efficacy and microbial virulence during space flight. Trends Biotechnol.24(3), 131–136 (2006).
  • Taylor PW, Sommer AP. Towards rational treatment of bacterial infections during extended space travel. Int. J. Antimicrob. Agents.26(3), 183–187 (2005).
  • Nichols HL, Zhang N, Holton S, Wen X. Effects of simulated microgravity on human osteoblast behavior: a proteomics study. Presented at: 32nd Annual Meeting of the Society for Biomaterials. Pittsburgh, PA, USA, 26–29 April 2006.
  • Häder DP, Hemmersbach R, Lebert M. Gravity and the Behaviour of Unicellular Organisms. Cambridge University Press, Cambridge, UK (2005).
  • Hemmersbach R, von der Wiesche M, Seibt D. Ground-based experimental platforms in gravitational biology and human physiology. Signal Transduction6, 381–387 (2006).
  • Schönberger J, Bauer J, Spruss T et al. Establishment and characterization of the follicular thyroid carcinoma cell line ML-1. J. Mol. Med.78(2), 102–110 (2000).
  • Rothermund L, Kreutz R, Kossmehl P et al. Early onset of chondroitin sulfate and osteopontin expression in angiotensin II-dependent left ventricular hypertrophy. Am. J. Hypertens.15(7 Pt 1), 644–652 (2002).
  • Riecke K, Grimm D, Shakibaei M et al. Low doses of 2,3,7,8-tetrachlorodibenzo- p-dioxin increase transforming growth factor β and cause myocardial fibrosis in marmosets (Callithrix jacchus). Arch. Toxicol.76(5–6), 360–366 (2002).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.