197
Views
8
CrossRef citations to date
0
Altmetric
Review

Proteomics of osteoarthritic chondrocytes and cartilage

, &
Pages 749-760 | Published online: 09 Jan 2014

References

  • Lawrence RC, Felson DT, Helmick CG et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum.58(1), 26–35 (2008).
  • Green GA. Understanding NSAIDs: from aspirin to COX-2. Clin. Cornerstone3(5), 50–60 (2001).
  • Messier SP. Obesity and osteoarthritis: disease genesis and nonpharmacologic weight management. Rheum. Dis. Clin. North Am.34(3), 713–729 (2008).
  • Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res.3(2), 107–113 (2001).
  • Abramson SB, Attur M, Yazici Y. Prospects for disease modification in osteoarthritis. Nat. Clin. Pract. Rheumatol.2(6), 304–312 (2006).
  • Mc Anulty R, Laurent, GJ. In vivo measurement of collagen metabolism in cartilage and bone. In: Methods in Cartilage Research. Academic Press Inc., MA, USA 140–142 (1990).
  • Aigner T, Reichenberger E, Bertling W et al. Type X collagen expression in osteoarthritic and rheumatoid articular cartilage. Virchows Arch. B Cell Pathol.63(4), 205–211 (1993).
  • Sato T, Konomi K, Yamasaki S et al. Comparative analysis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage. Arthritis Rheum.54(3), 808–817 (2006).
  • Watters JW, Cheng C, Pickarski M et al. Inverse relationship between matrix remodeling and lipid metabolism during osteoarthritis progression in the STR/Ort mouse. Arthritis Rheum.56(9), 2999–3009 (2007).
  • Iliopoulos D, Malizos KN, Tsezou A. Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann. Rheum. Dis.66(12), 1616–1621 (2007).
  • Loeser RF, Im HJ, Richardson B, Lu Q, Chubinskaya S. Methylation of the OP-1 promoter: potential role in the age-related decline in OP-1 expression in cartilage. Osteoarthr. Cartil.17(4), 513–517 (2009).
  • Nasu Y, Nishida K, Miyazawa S et al. Trichostatin A, a histone deacetylase inhibitor, suppresses synovial inflammation and subsequent cartilage destruction in a collagen antibody-induced arthritis mouse model. Osteoarthr. Cartil.16(6), 723–732 (2008).
  • Sakimura R, Tanaka K, Yamamoto S et al. The effects of histone deacetylase inhibitors on the induction of differentiation in chondrosarcoma cells. Clin. Cancer Res.13(1), 275–282 (2007).
  • McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet.3(10), 737–747 (2002).
  • Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat. Rev. Cancer6(4), 259–269 (2006).
  • Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE3(11), e3740 (2008).
  • Pandey DP, Picard D. miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor a mRNA. Mol. Cell. Biol.29(13), 3783–3790 (2009).
  • Bhaumik D, Scott GK, Schokrpur S et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY)1(4), 402–411 (2009).
  • Curtale G, Citarella F, Carissimi C et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood115(2), 265–273 (2010).
  • Li G, Luna C, Qiu J, Epstein DL, Gonzalez P. Modulation of inflammatory markers by miR-146a during replicative senescence in trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci.51(6), 2976–2985 (2010).
  • Yamasaki K, Nakasa T, Miyaki S et al. Expression of microRNA-146a in osteoarthritis cartilage. Arthritis Rheum.60(4), 1035–1041 (2009).
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell136(2), 215–233 (2009).
  • Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell Biol.8(4), 307–318 (2007).
  • Ravid T, Hochstrasser M. Diversity of degradation signals in the ubiquitin–proteasome system. Nat. Rev. Mol. Cell Biol.9(9), 679–690 (2008).
  • Ubersax JA, Ferrell JE Jr. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol.8(7), 530–541 (2007).
  • De Ceuninck F, Berenbaum F. Proteomics: addressing the challenges of osteoarthritis. Drug Discov. Today14(13–14), 661–667 (2009).
  • Wilson R, Whitelock M, Bateman JF. Proteomics makes progress in cartilage and arthritis research. Matrix Biol.28(3), 121–128 (2009).
  • Garcia BA, Platt D, Born TL et al. Protein profile of osteoarthritic human articular cartilage using tandem mass spectrometry. Rapid Commun. Mass Spectrom.20(20), 2999–3006 (2006).
  • Guo D, Tan W, Wang F et al. Proteomic analysis of human articular cartilage: identification of differentially expressed proteins in knee osteoarthritis. Joint Bone Spine75(4), 439–444 (2008).
  • Hermansson M, Sawaji Y, Bolton M et al. Proteomic analysis of articular cartilage shows increased type II collagen synthesis in osteoarthritis and expression of inhibin bA (activin A), a regulatory molecule for chondrocytes. J. Biol. Chem.279(42), 43514–43521 (2004).
  • Vincourt JB, Vignaud M, Lionneton F et al. Increased expression of matrilin-3 not only in osteoarthritic articular cartilage but also in cartilage-forming tumors, and down-regulation of SOX9 via epidermal growth factor domain 1-dependent signaling. Arthritis Rheum.58(9), 2798–2808 (2008).
  • Wilson R, Bateman F. A robust method for proteomic characterization of mouse cartilage using solubility-based sequential fractionation and two-dimensional gel electrophoresis. Matrix Biol.27(8), 709–712 (2008).
  • Wilson R, Belluoccio D, Little B, Fosang AJ, Bateman JF. Proteomic characterization of mouse cartilage degradation in vitro.Arthritis Rheum.58(10), 3120–3131 (2008).
  • Wu J, Liu W, Bemis A et al. Comparative proteomic characterization of articular cartilage tissue from normal donors and patients with osteoarthritis. Arthritis Rheum.56(11), 3675–3684 (2007).
  • Zhen EY, Brittain IJ, Laska DA et al. Characterization of metalloprotease cleavage products of human articular cartilage. Arthritis Rheum.58(8), 2420–2431 (2008).
  • De Ceuninck F, Marcheteau E, Berger S et al. Assessment of some tools for the characterization of the human osteoarthritic cartilage proteome. J. Biomol. Tech.16(3), 256–265 (2005).
  • De Ceuninck F, Dassencourt L, Anract P. The inflammatory side of human chondrocytes unveiled by antibody microarrays. Biochem. Biophys. Res. Commun.323(3), 960–969 (2004).
  • Pecora F, Forlino A, Gualeni B et al. A quantitative and qualitative method for direct 2-DE analysis of murine cartilage. Proteomics7(21), 4003–4007 (2007).
  • Catterall JB, Rowan AD, Sarsfield S et al. Development of a novel 2D proteomics approach for the identification of proteins secreted by primary chondrocytes after stimulation by IL-1 and oncostatin M. Rheumatology (Oxford)45(9), 1101–1109 (2006).
  • Freyria AM, Ronziere MC, Boutillon MM, Herbage D. Two-dimensional electrophoresis of intracellular and secreted protein synthesized by fetal bovine chondrocytes in high-density culture. Electrophoresis16(7), 1268–1272 (1995).
  • Ruiz-Romero C, Lopez-Armada MJ, Blanco FJ. Proteomic characterization of human normal articular chondrocytes: a novel tool for the study of osteoarthritis and other rheumatic diseases. Proteomics5(12), 3048–3059 (2005).
  • Freyria AM, Becchi M. Changes of chondrocyte metabolism in vitro: an approach by proteomic analysis. Methods Mol. Med.100, 165–182 (2004).
  • Lambrecht S, Verbruggen G, Verdonk PC, Elewaut D, Deforce D. Differential proteome analysis of normal and osteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis. Osteoarthr. Cartil.16(2), 163–173 (2008).
  • Ruiz-Romero C, Blanco FJ. The role of proteomics in osteoarthritis pathogenesis research. Curr. Drug Targets10(6), 543–556 (2009).
  • Woods A, Wang G, Beier F. Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions. J. Cell Physiol.213(1), 1–8 (2007).
  • Vincourt JB, Lionneton F, Kratassiouk G et al. Establishment of a reliable method for direct proteome characterization of human articular cartilage. Mol. Cell Proteomics5(10), 1984–1995 (2006).
  • Perez-Perez R, Ortega-Delgado FJ, Garcia-Santos E et al. Differential proteomics of omental and subcutaneous adipose tissue reflects their unalike biochemical and metabolic properties. J. Proteome Res. DOI: 10.1021/pr800942k (2009) (Epub ahead of print).
  • Zhao Y, Lee WN, Xiao GG. Quantitative proteomics and biomarker discovery in human cancer. Expert Rev. Proteomics6(2), 115–118 (2009).
  • Cohen NP, Foster RJ, Mow VC. Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther.28(4), 203–215 (1998).
  • Kirsch T. Annexins – their role in cartilage mineralization. Front. Biosci.10, 576–581 (2005).
  • Lorenz P, Ruschpler P, Koczan D, Stiehl P, Thiesen HJ. From transcriptome to proteome: differentially expressed proteins identified in synovial tissue of patients suffering from rheumatoid arthritis and osteoarthritis by an initial screen with a panel of 791 antibodies. Proteomics3(6), 991–1002 (2003).
  • Polacek M, Bruun JA, Johansen O, Martinez I. Differences in the secretome of cartilage explants and cultured chondrocytes unveiled by SILAC technology. J. Orthop. Res.28(8), 1040–1049 (2010).
  • Liao H, Wu J, Kuhn E et al. Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis. Arthritis Rheum.50(12), 3792–3803 (2004).
  • Washburn MP, Ulaszek R, Deciu C, Schieltz DM, Yates JR 3rd. Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal. Chem.74(7), 1650–1657 (2002).
  • Zerovnik E. The emerging role of cystatins in Alzheimer’s disease. Bioessays31(6), 597–599 (2009).
  • Novinec M, Kovacic L, Skrlj N, Turk V, Lenarcic B. Recombinant human SMOCs produced by in vitro refolding: calcium-binding properties and interactions with serum proteins. Protein Expr. Purif.62(1), 75–82 (2008).
  • Yoshida Y, Chiba T, Tokunaga F et al. E3 ubiquitin ligase that recognizes sugar chains. Nature418(6896), 438–442 (2002).
  • Ruiz-Romero C, Carreira V, Rego I et al. Proteomic analysis of human osteoarthritic chondrocytes reveals protein changes in stress and glycolysis. Proteomics8(3), 495–507 (2008).
  • Messaoudi S, Peyrat JF, Brion JD, Alami M. Recent advances in Hsp90 inhibitors as antitumor agents. Anticancer Agents Med. Chem.8(7), 761–782 (2008).
  • Witke SA W, Hartwig JH, Azuma T, Stossel TP, Kwiatkowski DJ. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell81(1), 41–51 (1995).
  • Vasioukhin V, Fuchs E. Actin dynamics and cell–cell adhesion in epithelia. Curr. Opin. Cell Biol.13, 76–84 (2001).
  • Aidinis V, Carninci, P., Armaka G et al. Cytoskeletal rearrangements in synovial fibroblasts as a novel pathophysiological determinant of modeled rheumatoid arthritis. PLoS Genet.1(4), e48 (2005); erratum in PLoS Genet.1(5), e73 (2005).
  • Giganti A, Friederich E. The actin cytoskeleton as a therapeutic target: state of the art and future directions. Prog. Cell Cycle Res.5, 511–525 (2003).
  • Vasilopoulos Y. Gkretsi V, Armaka M, Aidinis V, Kollias G. Actin cytoskeleton dynamics linked to synovial fibroblast activation as a novel pathogenic principle in TNF-driven arthritis. Ann. Rheum. Dis.66(Suppl. 3), 23–28 (2007).
  • Lee D, Kiener HP, Agarwal SK et al. Cadherin-11 in synovial lining formation and pathology in arthritis. Science315(5814), 1006–1010 (2007).
  • Medici D, Razzaque MS, Deluca S et al. FGF-23-Klotho signaling stimulates proliferation and prevents vitamin D-induced apoptosis. J. Cell Biol.182(3), 459–465 (2008).
  • Perwad F, Zhang MY, Tenenhouse HS, Portale AA. Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1α-hydroxylase expression in vitro.Am. J. Physiol. Renal Physiol.293(5), F1577–F1583 (2007).
  • Ito G, Uchiyama M, Kondo M et al. Kruppel-like factor 6 is frequently down-regulated and induces apoptosis in non-small cell lung cancer cells. Cancer Res.64(11), 3838–3843 (2004).
  • Sangodkar J, Shi J, DiFeo A et al. Functional role of the KLF6 tumour suppressor gene in gastric cancer. Eur. J. Cancer45(4), 666–676 (2009).
  • Iliopoulos D, Guler G, Han SY et al. Fragile genes as biomarkers: epigenetic control of WWOX and FHIT in lung, breast and bladder cancer. Oncogene24(9), 1625–1633 (2005).
  • Aqeilan RI, Hagan JP, de Bruin A et al. Targeted ablation of the WW domain-containing oxidoreductase tumor suppressor leads to impaired steroidogenesis. Endocrinology150(3), 1530–1535 (2009).
  • Boileau C, J Martel-Pelletier, Fahmi H et al. The peroxisome proliferator-activated receptor g agonist pioglitazone reduces the development of cartilage lesions in an experimental dog model of osteoarthritis: in vivo protective effects mediated through the inhibition of key signaling and catabolic pathways. Arthritis Rheum.56(7), 2288–2298 (2007).
  • Kobayashi T, Notoya K, Naito T et al. Pioglitazone, a peroxisome proliferator-activated receptor g agonist, reduces the progression of experimental osteoarthritis in guinea pigs. Arthritis Rheum.52(2), 479–487 (2005).
  • Gobezie R, Kho A, Krastins B et al. High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res. Ther.9(2), R36 (2007).
  • Kamphorst JJ, van der Heijden R, DeGroot J et al. Profiling of endogenous peptides in human synovial fluid by NanoLC-MS: method validation and peptide identification. J. Proteome Res.6(11), 4388–4396 (2007).
  • Sinz A, Bantscheff M, Mikkat S et al. Mass spectrometric proteome analyses of synovial fluids and plasmas from patients suffering from rheumatoid arthritis and comparison to reactive arthritis or osteoarthritis. Electrophoresis23(19), 3445–3456 (2002).
  • Ruiz-Romero C, Blanco FJ. Proteomics role in the search for improved diagnosis, prognosis and treatment of osteoarthritis. Osteoarthr. Cartil.18(4), 500–509 (2010).
  • Mengshol JA, Vincenti MP, Coon CI, Barchowsky A, Brinckerhoff CE. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor κB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum.43(4), 801–811 (2000).
  • Schmidt-Rohlfing B, Gavenis K, Kippels M, Schneider U. New potential markers for cartilage degradation of the knee joint. Scand. J. Rheumatol.31(3), 151–157 (2002).
  • Evans CH. Novel biological approaches to the intra-articular treatment of osteoarthritis. BioDrugs19(6), 355–362 (2005).
  • Evans CH, Gouze JN, Gouze E, Robbins PD, Ghivizzani SC. Osteoarthritis gene therapy. Gene Ther.11(4), 379–389 (2004).
  • Evans CH, Robbins PD, Ghivizzani SC et al. Gene transfer to human joints: progress toward a gene therapy of arthritis. Proc. Natl Acad. Sci. USA102(24), 8698–8703 (2005).
  • Rudolphi K, Gerwin N, Verzijl N, van der Kraan P, van den Berg W. Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthr. Cartil.11(10), 738–746 (2003).
  • Chevalier X, Goupille P, Beaulieu AD et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum.61(3), 344–352 (2009).
  • Alexeyenko A, Sonnhammer EL. Global networks of functional coupling in eukaryotes from comprehensive data integration. Genome Res.19(6), 1107–1116 (2009).
  • Antal MA, Bode C, Csermely P. Perturbation waves in proteins and protein networks: applications of percolation and game theories in signaling and drug design. Curr. Protein Pept. Sci.10(2), 161–172 (2009).
  • Lee SA, Chan CH, Chen TC et al. POINeT: protein interactome with sub-network analysis and hub prioritization. BMC Bioinformatics10, 114 (2009).
  • Aigner T, Bartnik E, Sohler F, Zimmer R. Functional genomics of osteoarthritis: on the way to evaluate disease hypotheses. Clin. Orthop. Relat. Res. (427 Suppl.), S138–S143 (2004).
  • Aigner T, Haag J, Zimmer R. Functional genomics, evo–devo and systems biology: a chance to overcome complexity?. Curr. Opin. Rheumatol.19(5), 463–470 (2007).
  • Schadt EE, Lamb J, Yang X et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet.37(7), 710–717 (2005).
  • Sieberts SK, Schadt EE. Moving toward a system genetics view of disease. Mamm. Genome18(6–7), 389–401 (2007).
  • Tu Z, Argmann C, Wong KK et al. Integrating siRNA and protein-protein interaction data to identify an expanded insulin signaling network. Genome Res.19(6), 1057–1067 (2009).
  • Dam EB, Loog M, Christiansen C et al. Identification of progressors in osteoarthritis by combining biochemical and MRI-based markers. Arthritis Res. Ther.11(4), R115 (2009).
  • Ruiz-Romero C, Calamia V, Mateos J et al. Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol. Cell Proteomics8(1), 172–189 (2009).
  • Uchida T, Fukawa A et al. Application of a novel protein biochip technology for detection and identification of rheumatoid arthritis biomarkers in synovial fluid. J. Proteome Res.1(6), 495–499 (2002).
  • Stoll D, Templin MF et al. Protein microarrays: applications and future challenges. Curr. Opin. Drug Discov. Devel.8(2), 239–252 (2005).
  • Zangar R, Varnum CS et al. Studying cellular processes and detecting disease with protein microarrays. Drug Metab. Rev.37(3), 473–487 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.