71
Views
1
CrossRef citations to date
0
Altmetric
Review

Proteins of the Hedgehog signaling pathway as therapeutic targets against cancer

&
Pages 601-612 | Published online: 09 Jan 2014

References

  • Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature287(5785), 795–801 (1980).
  • Echelard Y, Epstein DJ, St-Jacques B et al. Sonic hedgehog, a member of a family of putative signalling molecules, is implicated in the regulation of CNS polarity. Cell75(7), 1417–1430 (1993).
  • McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signalling. Curr. Top. Dev. Biol.53, 1–114 (2003).
  • Rohatgi R, Scott MP. Cell biology. Arrestin’ movement in cilia. Science320(5884), 1726–1727 (2008).
  • Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev.22(18), 2454–2472 (2008).
  • Hausmann G, von Mering C, Basler K. The hedgehog signalling pathway: where did it come from? PLoS Biol.7(6), e1000146 (2009).
  • Mann RK, Beachy PA. Novel lipid modifications of secreted protein signals. Annu. Rev. Biochem.73, 891–923 (2004).
  • Ingham PW, McMahon AP. Hedgehog signalling in animal development: paradigms and principles. Genes Dev.15(23), 3059–3087 (2001).
  • Bale AE. Hedgehog signalling and human disease. Annu. Rev. Genomics Hum. Genet.3, 47–65 (2002).
  • Nieuwenhuis E, Hui CC. Hedgehog signalling and congenital malformations. Clin. Genet.67(3), 193–208 (2005).
  • Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature426(6962), 83–87 (2003).
  • Pan J, Wang Q, Snell WJ. Cilium-generated signalling and cilia-related disorders. Lab. Invest.85(4), 452–463 (2005).
  • Kyttala M, Tallila J, Salonen R et al. MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat. Genet.38(2), 155–157 (2006).
  • Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature432(7015), 324–331 (2004).
  • Dellovade T, Romer JT, Curran T, Rubin LL. The hedgehog pathway and neurological disorders. Annu. Rev. Neurosci.29, 539–563 (2006).
  • Ferretti E, De Smaele E, Di Marcotullio L, Screpanti I, Gulino A. Hedgehog checkpoints in medulloblastoma: the chromosome 17p deletion paradigm. Trends Mol. Med.11(12), 537–545 (2005).
  • Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature414(6859), 105–111 (2001).
  • Scales SJ, de Sauvage FJ. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol. Sci.30(6), 303–312 (2009).
  • Ruiz i Altaba A, Palma V, Dahmane N. Hedgehog–Gli signalling and the growth of the brain. Nat. Rev. Neurosci.3(1), 24–33 (2002).
  • Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature411(6835), 349–354 (2001).
  • Nicolis SK. Cancer stem cells and “stemness” genes in neuro-oncology. Neurobiol. Dis.25(2), 217–229 (2007).
  • Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. Hedgehog–Gli1 signalling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol.17(2), 165–172 (2007).
  • Gulino A, Di Marcotullio L, Ferretti E, De Smaele E, Screpanti I. Hedgehog signalling pathway in neural development and disease. Psychoneuroendocrinology32(Suppl. 1), S52–S56 (2007).
  • Muenke M, Beachy PA. Genetics of ventral forebrain development and holoprosencephaly. Curr. Opin. Genet. Dev.10(3), 262–269 (2000).
  • Chiang C, Litingtung Y, Lee E et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature383(6599), 407–413 (1996).
  • Traiffort E, Dubourg C, Faure H et al. Functional characterization of sonic hedgehog mutations associated with holoprosencephaly. J. Biol. Chem.279(41), 42889–42897 (2004).
  • Day ES, Wen D, Garber EA et al. Zinc-dependent structural stability of human Sonic hedgehog. Biochemistry38(45), 14868–14880 (1999).
  • Schell-Apacik C, Rivero M, Knepper JL, Roessler E, Muenke M, Ming JE. Sonic Hedgehog mutations causing human holoprosencephaly impair neural patterning activity. Hum. Genet.113(2), 170–177 (2003).
  • Maity T, Fuse N, Beachy PA. Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly. Proc. Natl Acad. Sci. USA102(47), 17026–17031 (2005).
  • Johnson RL, Rothman AL, Xie J et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science272(5268), 1668–1671 (1996).
  • Gailani MR, Bale SJ, Leffell DJ et al. Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell69(1), 111–117 (1992).
  • Hahn H, Wicking C, Zaphiropoulous PG et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell85(6), 841–851 (1996).
  • Xie J, Murone M, Luoh SM et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature391(6662), 90–92 (1998).
  • Reifenberger J, Wolter M, Weber RG et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res.58(9), 1798–1803 (1998).
  • Pastorino L, Cusano R, Nasti S et al. Molecular characterization of Italian nevoid basal cell carcinoma syndrome patients. Hum. Mutat.25(3), 322–323 (2005).
  • Strutt H, Thomas C, Nakano Y et al. Mutations in the sterol-sensing domain of Patched suggest a role for vesicular trafficking in Smoothened regulation. Curr. Biol.11(8), 608–613 (2001).
  • Martin V, Carrillo G, Torroja C, Guerrero I. The sterol-sensing domain of Patched protein seems to control Smoothened activity through Patched vesicular trafficking. Curr. Biol.11(8), 601–607 (2001).
  • Chidambaram A, Goldstein AM, Gailani MR et al. Mutations in the human homologue of the Drosophila patched gene in Caucasian and African–American nevoid basal cell carcinoma syndrome patients. Cancer Res.56(20), 4599–4601 (1996).
  • Taipale J, Cooper MK, Maiti T, Beachy PA. Patched acts catalytically to suppress the activity of Smoothened. Nature418(6900), 892–897 (2002).
  • Wang W, Wang J, Li J, Mao L, Guo F, Zhang B. New mutation of the patched homologue 1 gene in a Chinese family with naevoid basal cell carcinoma syndrome. Br. J. Oral Maxillofac. Surg.47(5), 366–369 (2009).
  • Li J, Wang J, Liu Y, Wang W. Analysis of mutation in exon 17 of PTCH in patients with nevoid basal cell carcinoma syndrome. Mol. Biol. Rep.37(1), 359–362 (2010).
  • Lam CW, Xie J, To KF et al. A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene18(3), 833–836 (1999).
  • Scheer A, Fanelli F, Costa T, De Benedetti PG, Cotecchia S. The activation process of the α1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate. Proc. Natl Acad. Sci. USA94(3), 808–813 (1997).
  • Reifenberger J, Wolter M, Knobbe CB et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br. J. Dermatol.152(1), 43–51 (2005).
  • Yauch RL, Dijkgraaf GJ, Alicke B et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science326(5952), 572–574 (2009).
  • Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature459(7245), 356–363 (2009).
  • Taylor MD, Liu L, Raffel C et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet.31(3), 306–310 (2002).
  • Pastorino L, Ghiorzo P, Nasti S et al. Identification of a SUFU germline mutation in a family with Gorlin syndrome. Am. J. Med. Genet. A149A(7), 1539–1543 (2009).
  • Binns W, James LF, Shupe JL, Thacker EJ. Cyclopian-type malformation in lambs. Arch. Environ. Health5, 106–108 (1962).
  • Berman DM, Karhadkar SS, Hallahan AR et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science297(5586), 1559–1561 (2002).
  • Tabs S, Avci O. Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur. J. Dermatol.14(2), 96–102 (2004).
  • Romer JT, Kimura H, Magdaleno S et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/-)p53(-/-) mice. Cancer Cell6(3), 229–240 (2004).
  • Frank-Kamenetsky M, Zhang XM, Bottega S et al. Small-molecule modulators of Hedgehog signalling: identification and characterization of Smoothened agonists and antagonists. J. Biol.1(2), 10 (2002).
  • Chen JK, Taipale J, Young KE, Maiti T, Beachy PA. Small molecule modulation of Smoothened activity. Proc. Natl Acad. Sci. USA99(22), 14071–14076 (2002).
  • Taipale J, Chen JK, Cooper MK et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature406(6799), 1005–1009 (2000).
  • Williams JA, Guicherit OM, Zaharian BI et al. Identification of a small molecule inhibitor of the hedgehog signalling pathway: effects on basal cell carcinoma-like lesions. Proc. Natl Acad. Sci. USA100(8), 4616–4621 (2003).
  • Rudin CM, Hann CL, Peacock CD, Watkins DN. Novel systemic therapies for small cell lung cancer. J. Natl Compr. Canc. Netw.6(3), 315–322 (2008).
  • Rudin CM, Hann CL, Laterra J et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med.361(12), 1173–1178 (2009).
  • Mistretta CM, Liu HX, Gaffield W, MacCallum DK. Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signalling in taste papilla development and patterning: fungiform papillae double in number and form in novel locations in dorsal lingual epithelium. Dev. Biol.254(1), 1–18 (2003).
  • Hall JM, Bell ML, Finger TE. Disruption of sonic hedgehog signalling alters growth and patterning of lingual taste papillae. Dev. Biol.255(2), 263–277 (2003).
  • Chiang C, Swan RZ, Grachtchouk M et al. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev. Biol.205(1), 1–9 (1999).
  • Von Hoff DD, LoRusso PM, Rudin CM et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med.361(12), 1164–1172 (2009).
  • Stanton BZ, Peng LF, Maloof N et al. A small molecule that binds Hedgehog and blocks its signalling in human cells. Nat. Chem. Biol.5(3), 154–156 (2009).
  • Stanton BZ, Peng LF. Small-molecule modulators of the Sonic Hedgehog signalling pathway. Mol. Biosyst.6(1), 44–54 (2010).
  • Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM. Two critical periods of Sonic Hedgehog signalling required for the specification of motor neuron identity. Cell87(4), 661–673 (1996).
  • Yauch RL, Gould SE, Scales SJ et al. A paracrine requirement for hedgehog signalling in cancer. Nature455(7211), 406–410 (2008).
  • Bailey JM, Swanson BJ, Hamada T et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin. Cancer Res.14(19), 5995–6004 (2008).
  • Lauth M, Toftgard R. The Hedgehog pathway as a drug target in cancer therapy. Curr. Opin. Investig. Drugs8(6), 457–461 (2007).
  • Congreve M, Marshall F. The impact of GPCR structures on pharmacology and structure-based drug design. Br. J. Pharmacol.159(5), 986–996 (2010).
  • Warne T, Serrano-Vega MJ, Baker JG et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature454(7203), 486–491 (2008).
  • Cherezov V, Caffrey M. Membrane protein crystallization in lipidic mesophases. A mechanism study using x-ray microdiffraction. Faraday Discuss.136, 195–212 (2007).
  • Rasmussen SG, Choi HJ, Rosenbaum DM et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature450(7168), 383–387 (2007).
  • Cherezov V, Rosenbaum DM, Hanson MA et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science318(5854), 1258–1265 (2007).
  • Jaakola VP, Griffith MT, Hanson MA et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science322(5905), 1211–1217 (2008).
  • Mus-Veteau I. Heterologous expression of membrane proteins for structural analysis. Methods Mol. Biol.601, 1–16 (2010).
  • Jacob L, Lum L. Hedgehog signalling pathway in Drosophila. Sci. STKE2007(407), cm7 (2007).
  • Aikin RA, Ayers KL, Therond PP. The role of kinases in the Hedgehog signalling pathway. EMBO Rep.9(4), 330–336 (2008).
  • Ruel L, Rodriguez R, Gallet A, Lavenant-Staccini L, Therond PP. Stability and association of Smoothened, Costal2 and Fused with cubitus interruptus are regulated by Hedgehog. Nat. Cell Biol.5(10), 907–913 (2003).
  • Lum L, Yao S, Mozer B et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science299(5615), 2039–2045 (2003).
  • Varjosalo M, Li SP, Taipale J. Divergence of hedgehog signal transduction mechanism between Drosophila and mammals. Dev. Cell10(2), 177–186 (2006).
  • Gavin AC, Bosche M, Krause R et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415(6868), 141–147 (2002).
  • Wodak SJ, Pu S, Vlasblom J, Seraphin B. Challenges and rewards of interaction proteomics. Mol. Cell. Proteomics8(1), 3–18 (2009).
  • Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol.17(10), 1030–1032 (1999).
  • Daulat AM, Maurice P, Froment C et al. Purification and identification of G protein-coupled receptor protein complexes under native conditions. Mol. Cell. Proteomics6(5), 835–844 (2007).
  • Dirnberger D, Messerschmid M, Baumeister R. An optimized split-ubiquitin cDNA-library screening system to identify novel interactors of the human Frizzled 1 receptor. Nucleic Acids Res.36(6), e37 (2008).
  • Daulat AM, Maurice P, Jockers R. Recent methodological advances in the discovery of GPCR-associated protein complexes. Trends Pharmacol. Sci.30(2), 72–78 (2009).
  • Borch J, Roepstorff P. Combinations of SPR and MS for characterization of native and recombinant proteins in cell lysates. Mol. Biotechnol.33(3), 179–190 (2006).
  • Visser NF, Scholten A, van den Heuvel RH, Heck AJ. Surface-plasmon-resonance-based chemical proteomics: efficient specific extraction and semiquantitative identification of cyclic nucleotide-binding proteins from cellular lysates by using a combination of surface plasmon resonance, sequential elution and liquid chromatography-tandem mass spectrometry. Chembiochem8(3), 298–305 (2007).
  • Ravanat C, Wurtz V, Ohlmann P et al. Use of tandem Biacore-mass spectrometry to identify platelet membrane targets of novel monoclonal antibodies. Anal. Biochem.386(2), 237–243 (2009).
  • Catimel B, Rothacker J, Catimel J et al. Biosensor-based micro-affinity purification for the proteomic analysis of protein complexes. J. Proteome Res.4(5), 1646–1656 (2005).
  • Joubert O, Nehme R, Fleury D et al. Functional studies of membrane-bound and purified human Hedgehog receptor Patched expressed in yeast. Biochim. Biophys. Acta1788(9), 1813–1821 (2009).
  • Nehme R, Joubert O, Bidet M et al. Stability study of the human G-protein coupled receptor, smoothened. Biochim. Biophys. Acta1798(6), 1100–1110 (2010).
  • Dahmane T, Damian M, Mary S, Popot JL, Baneres JL. Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry48(27), 6516–6521 (2009).
  • Tate CG, Schertler GF. Engineering G protein-coupled receptors to facilitate their structure determination. Curr. Opin. Struct. Biol.19(4), 386–395 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.