41
Views
4
CrossRef citations to date
0
Altmetric
Review

Applications of proteomic technologies for understanding the premature proteolysis of CFTR

, &
Pages 473-486 | Published online: 09 Jan 2014

References

  • Watson MS, Cutting GR, Desnick RJ et al. Cystic fibrosis population carrier screening: 2004 revision of American College of Medical Genetics mutation panel. Genet. Med.6(5), 387–391 (2004).
  • Zeitlin PL. Novel pharmacologic therapies for cystic fibrosis. J. Clin. Invest.103(4), 447–452 (1999).
  • Dalemans W, Barbry P, Champigny G et al. Altered chloride ion channel kinetics associated with the ΔF508 cystic fibrosis mutation. Nature354(6354), 526–528 (1991).
  • Haws CM, Nepomuceno IB, Krouse ME et al. Δ F508–CFTR channels: kinetics, activation by forskolin, and potentiation by xanthines. Am J. Physiol.270(5 Pt 1), C1544–C1555 (1996).
  • Van Goor F, Hadida S, Grootenhuis PD et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator VX-770. Proc. Natl Acad. Sci. USA106(44), 18825–18830 (2009).
  • Riordan JR. Assembly of functional CFTR chloride channels. Annu. Rev. Physiol.67, 701–718 (2005).
  • Du K, Lukacs GL. Cooperative assembly and misfolding of CFTR domains in vivo. Mol. Biol. Cell.20(7), 1903–1915 (2009).
  • Pitonzo D, Yang Z, Matsumura Y, Johnson AE, Skach WR. Sequence-specific retention and regulated integration of a nascent membrane protein by the endoplasmic reticulum Sec61 translocon. Mol. Biol. Cell.20(2), 685–698 (2009).
  • Cui L, Aleksandrov L, Chang XB et al. Domain interdependence in the biosynthetic assembly of CFTR. J. Mol. Biol.365(4), 981–994 (2007).
  • Wang X, Venable J, LaPointe P et al. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell127(4), 803–815 (2006).
  • Meacham GC, Lu Z, King S, Sorscher E, Tousson A, Cyr DM. The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J.18(6), 1492–1505 (1999).
  • Kleizen B, van Vlijmen T, de Jonge HR, Braakman I. Folding of CFTR is predominantly cotranslational. Mol. Cell.20(2), 277–287 (2005).
  • Hartl FU, Hayer-Hartl M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol.16(6), 574–581 (2009).
  • Fan CY, Lee S, Cyr DM. Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones8(4), 309–316 (2003).
  • Felts SJ, Toft DO. p23, a simple protein with complex activities. Cell Stress Chaperones8(2), 108–113 (2003).
  • Amaral MD. Processing of CFTR: traversing the cellular maze – how much CFTR needs to go through to avoid cystic fibrosis? Pediatr. Pulmonol.39(6), 479–491 (2005).
  • Bertrand CA, Frizzell RA. The role of regulated CFTR trafficking in epithelial secretion. Am. J. Physiol. Cell Physiol.285(1), C1–C18 (2003).
  • Bucciantini M, Giannoni E, Chiti F et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature416(6880), 507–511 (2002).
  • Nakatsukasa K, Brodsky JL. The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic9(6), 861–870 (2008).
  • Turner GC, Varshavsky A. Detecting and measuring cotranslational protein degradation in vivo. Science289(5487), 2117–2120 (2000).
  • Chuang SM, Chen L, Lambertson D, Anand M, Kinzy TG, Madura K. Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A. Mol. Cell Biol.25(1), 403–413 (2005).
  • Rosser MF, Grove DE, Chen L, Cyr DM. Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2. Mol. Biol. Cell.19(11), 4570–4579 (2008).
  • Younger JM, Chen L, Ren HY et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell126(3), 571–582 (2006).
  • Sun F, Zhang R, Gong X, Geng X, Drain PF, Frizzell RA. Derlin-1 promotes the efficient degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR folding mutants. J. Biol. Chem.281(48), 36856–36863 (2006).
  • Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol.3(1), 100–105 (2001).
  • Lukacs GL, Mohamed A, Kartner N, Chang XB, Riordan JR, Grinstein S. Conformational maturation of CFTR but not its mutant counterpart (ΔF508) occurs in the endoplasmic reticulum and requires ATP. EMBO J.13(24), 6076–6086 (1994).
  • Yang Y, Janich S, Cohn JA, Wilson JM. The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc. Natl Acad. Sci. USA90(20), 9480–9484 (1993).
  • Zhang F, Kartner N, Lukacs GL. Limited proteolysis as a probe for arrested conformational maturation of Δ F508 CFTR. Nat. Struct. Biol.5(3), 180–183 (1998).
  • Ward CL, Kopito RR. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J. Biol. Chem.269(41), 25710–25718 (1994).
  • Pickart CM, Fushman D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol.8(6), 610–616 (2004).
  • Hochstrasser M. Lingering mysteries of ubiquitin-chain assembly. Cell124(1), 27–34 (2006).
  • Deveraux Q, Ustrell V, Pickart C, Rechsteiner M. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem.269(10), 7059–7061 (1994).
  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. Recognition of the polyubiquitin proteolytic signal. EMBO J.19(1), 94–102 (2000).
  • Lauwers E, Jacob C, Andre B. K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. J. Cell Biol.185(3), 493–502 (2009).
  • Spence J, Sadis S, Haas AL, Finley D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell Biol.15(3), 1265–1273 (1995).
  • Flick K, Ouni I, Wohlschlegel JA et al. Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain. Nat. Cell Biol.6(7), 634–641 (2004).
  • Dang Y, Siew LM, Zheng YH. APOBEC3G is degraded by the proteasomal pathway in a Vif-dependent manner without being polyubiquitylated. J. Biol. Chem.283(19), 13124–13131 (2008).
  • Sheaff RJ, Singer JD, Swanger J, Smitherman M, Roberts JM, Clurman BE. Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol. Cell.5(2), 403–410 (2000).
  • Coulombe P, Rodier G, Bonneil E, Thibault P, Meloche S. N-Terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome. Mol. Cell Biol.24(14), 6140–6150 (2004).
  • Ward CL, Omura S, Kopito RR. Degradation of CFTR by the ubiquitin–proteasome pathway. Cell83(1), 121–127 (1995).
  • Sato S, Ward CL, Kopito RR. Cotranslational ubiquitination of cystic fibrosis transmembrane conductance regulator in vitro. J. Biol. Chem.273(13), 7189–7192 (1998).
  • Sharma M, Pampinella F, Nemes C et al. Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J. Cell Biol.164(6), 923–933 (2004).
  • Bomberger JM, Barnaby RL, Stanton BA. The deubiquitinating enzyme USP10 regulates the post-endocytic sorting of cystic fibrosis transmembrane conductance regulator in airway epithelial cells. J. Biol. Chem.284(28), 18778–18789 (2009).
  • Hershko A, Ciechanover A. The ubiquitin system. Annu. Rev. Biochem.67, 425–479 (1998).
  • Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem.78, 363–397 (2009).
  • Xiong X, Chong E, Skach WR. Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane. J. Biol. Chem.274(5), 2616–2624 (1999).
  • Oberdorf J, Carlson EJ, Skach WR. Uncoupling proteasome peptidase and ATPase activities results in cytosolic release of an ER polytopic protein. J Cell Sci.119(Pt 2), 303–313 (2006).
  • Pollard HB, Eidelman O, Jozwik C et al.De novo biosynthetic profiling of high abundance proteins in cystic fibrosis lung epithelial cells. Mol. Cell Proteomics5(9), 1628–1637 (2006).
  • Davezac N, Tondelier D, Lipecka J et al. Global proteomic approach unmasks involvement of keratins 8 and 18 in the delivery of cystic fibrosis transmembrane conductance regulator (CFTR)/ΔF508-CFTR to the plasma membrane. Proteomics4(12), 3833–3844 (2004).
  • Gomes-Alves P, Couto F, Pesquita C, Coelho AV, Penque D. Rescue of F508del-CFTR by RXR motif inactivation triggers proteome modulation associated with the unfolded protein response. Biochim. Biophys. Acta1804(4), 856–865 (2010).
  • Gomes-Alves P, Neves S, Coelho AV, Penque D. Low temperature restoring effect on F508del-CFTR misprocessing: a proteomic approach. J. Proteomics73(2), 218–230 (2009).
  • Rennolds J, Boyaka PN, Bellis SL, Cormet-Boyaka E. Low temperature induces the delivery of mature and immature CFTR to the plasma membrane. Biochem. Biophys. Res. Commun.366(4), 1025–1029 (2008).
  • Carvalho-Oliveira IM, Charro N, Aarbiou J et al. Proteomic analysis of naphthalene-induced airway epithelial injury and repair in a cystic fibrosis mouse model. J. Proteome Res.8(7), 3606–3616 (2009).
  • Sloane AJ, Lindner RA, Prasad SS et al. Proteomic analysis of sputum from adults and children with cystic fibrosis and from control subjects. Am. J. Respir. Crit. Care Med.172(11), 1416–1426 (2005).
  • Srivastava M, Eidelman O, Jozwik C et al. Serum proteomic signature for cystic fibrosis using an antibody microarray platform. Mol. Genet. Metab.87(4), 303–310 (2006).
  • Frischer T, Myung JK, Maurer G, Eichler I, Szepfalusi Z, Lubec G. Possible dysregulation of chaperon and metabolic proteins in cystic fibrosis bronchial tissue. Proteomics6(11), 3381–3388 (2006).
  • Roxo-Rosa M, da Costa G, Luider TM et al. Proteomic analysis of nasal cells from cystic fibrosis patients and non-cystic fibrosis control individuals: search for novel biomarkers of cystic fibrosis lung disease. Proteomics6(7), 2314–2325 (2006).
  • Kiemer L, Cesareni G. Comparative interactomics: comparing apples and pears? Trends Biotechnol.25(10), 448–454 (2007).
  • Thelin WR, Chen Y, Gentzsch M et al. Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR. J. Clin. Invest.117(2), 364–374 (2007).
  • Florens L, Washburn MP. Proteomic analysis by multidimensional protein identification technology. Methods Mol. Biol.328159–175 (2006).
  • Wolters DA, Washburn MP, Yates JR III. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem.73(23), 5683–5690 (2001).
  • Koulov AV, Lapointe P, Lu B et al. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol. Biol. Cell.21(6), 871–884 (2010).
  • Singh OV, Vij N, Mogayzel PJ Jr, Jozwik C, Pollard HB, Zeitlin PL. Pharmacoproteomics of 4-phenylbutyrate-treated IB3–1 cystic fibrosis bronchial epithelial cells. J. Proteome Res.5(3), 562–571 (2006).
  • Rubenstein RC, Egan ME, Zeitlin PL. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing ΔF508-CFTR. J. Clin. Invest.100(10), 2457–2465 (1997).
  • Singh OV, Pollard HB, Zeitlin PL. Chemical rescue of ΔF508-CFTR mimics genetic repair in cystic fibrosis bronchial epithelial cells. Mol. Cell Proteomics7(6), 1099–1110 (2008).
  • Schwenk J, Harmel N, Zolles G et al. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science323(5919), 1313–1319 (2009).
  • Schwenk J, Metz M, Zolles G et al. Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature465(7295), 231–235 (2010).
  • Wittig I, Schagger H. Native electrophoretic techniques to identify protein–protein interactions. Proteomics9(23), 5214–5223 (2009).
  • Sokolova L, Wittig I, Barth HD, Schagger H, Brutschy B, Brandt U. Laser-induced liquid bead ion desorption-MS of protein complexes from blue-native gels, a sensitive top-down proteomic approach. Proteomics10(7), 1401–1407 (2010).
  • Weber M, Wehling M, Losel R. Proteins interact with the cytosolic mineralocorticoid receptor depending on the ligand. Am. J. Physiol. Heart Circ. Physiol.295(1), H361–H365 (2008).
  • Wessels HJ, Vogel RO, van den Heuvel L et al. LC-MS/MS as an alternative for SDS-PAGE in blue native analysis of protein complexes. Proteomics9(17), 4221–4228 (2009).
  • Brouillard F, Bensalem N, Hinzpeter A et al. Blue native/SDS-PAGE analysis reveals reduced expression of the mClCA3 protein in cystic fibrosis knock-out mice. Mol. Cell Proteomics4(11), 1762–1775 (2005).
  • Mio K, Ogura T, Mio M et al. Three-dimensional reconstruction of human cystic fibrosis transmembrane conductance regulator chloride channel revealed an ellipsoidal structure with orifices beneath the putative transmembrane domain. J. Biol. Chem.283(44), 30300–30310 (2008).
  • Cockman ME, Webb JD, Kramer HB, Kessler BM, Ratcliffe PJ. Proteomics-based identification of novel factor inhibiting hypoxia-inducible factor (HIF) substrates indicates widespread asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Mol. Cell Proteomics8(3), 535–546 (2009).
  • Commichau FM, Rothe FM, Herzberg C et al. Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. Mol. Cell Proteomics8(6), 1350–1360 (2009).
  • Herzberg C, Weidinger LA, Dorrbecker B, Hubner S, Stulke J, Commichau FM. SPINE: a method for the rapid detection and analysis of protein–protein interactions in vivo. Proteomics7(22), 4032–4035 (2007).
  • Pickart CM, Vella AT. Ubiquitin carrier protein-catalyzed ubiquitin transfer to histones. Mechanism and specificity. J. Biol. Chem.263(29), 15076–15082 (1988).
  • Peng J, Schwartz D, Elias JE et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol.21(8), 921–926 (2003).
  • Kirkpatrick DS, Weldon SF, Tsaprailis G, Liebler DC, Gandolfi AJ. Proteomic identification of ubiquitinated proteins from human cells expressing His-tagged ubiquitin. Proteomics5(8), 2104–2111 (2005).
  • Matsumoto M, Hatakeyama S, Oyamada K, Oda Y, Nishimura T, Nakayama KI. Large-scale analysis of the human ubiquitin-related proteome. Proteomics5(16), 4145–4151 (2005).
  • Vasilescu J, Smith JC, Ethier M, Figeys D. Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. J. Proteome Res.4(6), 2192–2200 (2005).
  • Marotti LA, Jr, Newitt R, Wang Y, Aebersold R, Dohlman HG. Direct identification of a G protein ubiquitination site by mass spectrometry. Biochemistry41(16), 5067–5074 (2002).
  • Lee JS, Hong US, Lee TH, Yoon SK, Yoon JB. Mass spectrometric analysis of tumor necrosis factor receptor-associated factor 1 ubiquitination mediated by cellular inhibitor of apoptosis 2. Proteomics4(11), 3376–3382 (2004).
  • Kirkpatrick DS, Hathaway NA, Hanna J et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol.8(7), 700–710 (2006).
  • Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science315(5809), 201–205 (2007).
  • Newton K, Matsumoto ML, Wertz IE et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell134(4), 668–678 (2008).
  • Pickart CM, Fushman D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol.8(6), 610–616 (2004).
  • Xu P, Duong DM, Seyfried NT et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell137(1), 133–145 (2009).
  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA100(12), 6940–6945 (2003).
  • Van Goor F, Straley KS, Cao D et al. Rescue of ΔF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am. J. Physiol. Lung Cell Mol. Physiol.290(6), L1117–L1130 (2006).
  • Pedemonte N, Lukacs GL, Du K et al. Small-molecule correctors of defective ΔF508-CFTR cellular processing identified by high-throughput screening. J. Clin. Invest.115(9), 2564–2571 (2005).
  • Hutt DM, Herman D, Rodrigues AP et al. Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nat. Chem. Biol.6(1), 25–33 (2010).
  • Harmon GS, Dumlao DS, Ng DT et al. Pharmacological correction of a defect in PPAR-γ signaling ameliorates disease severity in Cftr-deficient mice. Nat. Med.16(3), 313–318 (2010).
  • Tian Q, Stepaniants SB, Mao M et al. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol. Cell Proteomics3(10), 960–969 (2004).
  • Choo-Kang LR, Zeitlin PL. Induction of HSP70 promotes ΔF508 CFTR trafficking. Am. J. Physiol. Lung Cell Mol. Physiol.281(1), L58–L68 (2001).
  • Norez C, Noel S, Wilke M et al. Rescue of functional ΔF508-CFTR channels in cystic fibrosis epithelial cells by the α-glucosidase inhibitor miglustat. FEBS Lett.580(8), 2081–2086 (2006).
  • Gano JJ, Simon JA. A proteomic investigation of ligand-dependent HSP90 complexes reveals CHORDC1 as a novel ADP-dependent HSP90-interacting protein. Mol. Cell Proteomics9(2), 255–270 (2010).
  • Vij N, Fang S, Zeitlin PL. Selective inhibition of endoplasmic reticulum-associated degradation rescues ΔF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications. J. Biol. Chem.281(25), 17369–17378 (2006).
  • Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol.143(7), 1883–1898 (1998).
  • Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin–proteasome system by protein aggregation. Science292(5521), 1552–1555 (2001).
  • Jin BF, He K, Wang HX et al. Proteomic analysis of ubiquitin–proteasome effects: insight into the function of eukaryotic initiation factor 5A. Oncogene22(31), 4819–4830 (2003).
  • Matafora V, D’Amato A, Mori S, Blasi F, Bachi A. Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol. Cell Proteomics8(10), 2243–2255 (2009).
  • Henderson MJ, Vij N, Zeitlin PL. Ubiquitin c-terminal hydrolase-L1 (UCH-L1) protects CFTR from early stages of proteasomal degradation. J. Biol. Chem.285(15), 11314–11325 (2010).
  • Yoshida Y, Chiba T, Tokunaga F et al. E3 ubiquitin ligase that recognizes sugar chains. Nature418(6896), 438–442 (2002).
  • Gupta R, Kus B, Fladd C et al. Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol. Syst. Biol.3, 116 (2007).
  • Persaud A, Alberts P, Amsen EM et al. Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4–2 using proteome arrays. Mol. Syst. Biol.5, 333 (2009).
  • Merbl Y, Kirschner MW. Large-scale detection of ubiquitination substrates using cell extracts and protein microarrays. Proc. Natl Acad. Sci. USA106(8), 2543–2548 (2009).
  • Trzcinska-Daneluti AM, Ly D, Huynh L, Jiang C, Fladd C, Rotin D. High-content functional screen to identify proteins that correct F508del-CFTR function. Mol. Cell Proteomics8(4), 780–790 (2009).
  • Kortylewski M, Swiderski P, Herrmann A et al.In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat. Biotechnol.27(10), 925–932 (2009).
  • Love KT, Mahon KP, Levins CG et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA107(5), 1864–1869 (2010).
  • Shimizu H, Hori Y, Kaname S et al. siRNA-based therapy ameliorates glomerulonephritis. J. Am. Soc. Nephrol.21, 622–633 (2010).
  • Subramanya S, Kim SS, Abraham S et al. Targeted delivery of small interfering RNA to human dendritic cells to suppress dengue virus infection and associated proinflammatory cytokine production. J. Virol.84(5), 2490–2501 (2010).
  • Fedorov Y, Anderson EM, Birmingham A et al. Off-target effects by siRNA can induce toxic phenotype. RNA12(7), 1188–1196 (2006).
  • Jackson AL, Burchard J, Schelter J et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA12(7), 1179–1187 (2006).
  • Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol.5(9), 834–839 (2003).
  • Griesenbach U, Munkonge FM, Sumner-Jones S et al. Assessment of CFTR function after gene transfer in vitro and in vivo. Methods Mol. Biol.433, 229–242 (2008).
  • Li W, Zhang L, Johnson JS et al. Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium. Mol. Ther.17(12), 2067–2077 (2009).
  • Moss RB, Milla C, Colombo J et al. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled Phase 2B trial. Hum. Gene Ther.18(8), 726–732 (2007).
  • Mueller C, Strayer MS, Sirninger J et al.In vitro and in vivo functional characterization of gutless recombinant SV40-derived CFTR vectors. Gene Ther.17(2), 227–237 (2010).
  • Tocker AG, Kremer KL, Koldej R et al. Single-dose lentiviral gene transfer for lifetime airway gene expression. J Gene Med.11(10), 861–867 (2009).
  • White AF, Mazur M, Sorscher EJ, Zinn KR, Ponnazhagan S. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells. Hum. Gene Ther.19(12), 1407–1414 (2008).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17(10), 994–999 (1999).
  • Hansen KC, Schmitt-Ulms G, Chalkley RJ, Hirsch J, Baldwin MA, Burlingame AL. Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. Mol. Cell Proteomics2(5), 299–314 (2003).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics3(12), 1154–1169 (2004).
  • Hsu JL, Huang SY, Chow NH, Chen SH. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem.75(24), 6843–6852 (2003).
  • Sun X, Yan Z, Yi Y et al. Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets. J. Clin. Invest.118(4), 1578–1583 (2008).
  • Rogers CS, Stoltz DA, Meyerholz DK et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science321(5897), 1837–1841 (2008).
  • Ostedgaard LS, Rogers CS, Dong Q et al. Processing and function of CFTR-ΔF508 are species-dependent. Proc. Natl Acad. Sci. USA104(39), 15370–15375 (2007).
  • Zhang Y, Nijbroek G, Sullivan ML et al. Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol. Biol. Cell12(5), 1303–1314 (2001).
  • Farinha CM, Nogueira P, Mendes F, Penque D, Amaral MD. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Biochem. J.366(Pt 3), 797–806 (2002).
  • Farinha CM, Amaral MD. Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin. Mol. Cell Biol.25(12), 5242–5252 (2005).
  • Loo MA, Jensen TJ, Cui L, Hou Y, Chang XB, Riordan JR. Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J.17(23), 6879–6887 (1998).
  • Okiyoneda T, Harada K, Takeya M et al. ΔF508 CFTR pool in the endoplasmic reticulum is increased by calnexin overexpression. Mol. Biol. Cell.15(2), 563–574 (2004).
  • Norez C, Antigny F, Becq F, Vandebrouck C. Maintaining low Ca2+ level in the endoplasmic reticulum restores abnormal endogenous F508del-CFTR trafficking in airway epithelial cells. Traffic7(5), 562–573 (2006).
  • Ahner A, Nakatsukasa K, Zhang H, Frizzell RA, Brodsky JL. Small heat-shock proteins select ΔF508-CFTR for endoplasmic reticulum-associated degradation. Mol. Biol. Cell18(3), 806–814 (2007).
  • Alberti S, Bohse K, Arndt V, Schmitz A, Hohfeld J. The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol. Biol. Cell.15(9), 4003–4010 (2004).
  • Arndt V, Daniel C, Nastainczyk W, Alberti S, Hohfeld JB. AG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol. Biol. Cell.16(12), 5891–5900 (2005).
  • Schmidt BZ, Watts RJ, Aridor M, Frizzell RA. Cysteine string protein promotes proteasomal degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) by increasing its interaction with the C terminus of Hsp70-interacting protein and promoting CFTR ubiquitylation. J. Biol. Chem.284(7), 4168–4178 (2009).
  • Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol.3(1), 100–105 (2001).
  • Morito D, Hirao K, Oda Y et al. Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRΔF508. Mol. Biol. Cell.19(4), 1328–1336 (2008).
  • Ballar P, Ors AU, Yang H, Fang S. Differential regulation of CFTRΔF508 degradation by ubiquitin ligases gp78 and Hrd1. Int. J. Biochem. Cell Biol.42(1), 167–173 (2010).
  • Hassink GC, Zhao B, Sompallae R et al. The ER-resident ubiquitin-specific protease 19 participates in the UPR and rescues ERAD substrates. EMBO Rep.10(7), 755–761 (2009).
  • Bebok Z, Mazzochi C, King SA, Hong JS, Sorscher EJ. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61b and a cytosolic, deglycosylated intermediary. J. Biol. Chem.273(45), 29873–29878 (1998).
  • Fu L, Sztul E. Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator. J. Cell Biol.160(2), 157–163 (2003).
  • Nagahama M, Ohnishi M, Kawate Y. UBXD1 is a VCP-interacting protein that is involved in ER-associated degradation. Biochem. Biophys. Res. Commun.382(2), 303–308 (2009).
  • Gnann A, Riordan JR, Wolf DH. Cystic fibrosis transmembrane conductance regulator degradation depends on the lectins Htm1p/EDEM and the Cdc48 protein complex in yeast. Mol. Biol. Cell15(9), 4125–4135 (2004).
  • Wang B, Heath-Engel H, Zhang D et al. BAP31 interacts with Sec61 translocons and promotes retrotranslocation of CFTRΔF508 via the derlin-1 complex. Cell133(6), 1080–1092 (2008).
  • Lewis HA, Wang C, Zhao X et al. Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry. J. Mol. Biol.396(2), 406–430 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.