767
Views
126
CrossRef citations to date
0
Altmetric
Review

Protein microarrays and novel detection platforms

, &
Pages 61-79 | Published online: 09 Jan 2014

References

  • Hu Y, Huang X, Chen GY, Yao SQ. Recent advances in gel-based proteome profiling techniques. Mol. Biotechnol.28(1), 63–76 (2004).
  • Labaer J, Ramachandran N. Protein microarrays as tools for functional proteomics. Curr. Opin. Chem. Biol.9(1), 14–19 (2005).
  • Templin MF, Stoll D, Schwenk JM, Potz O, Kramer S, Joos TO. Protein microarrays: promising tools for proteomic research. Proteomics3(11), 2155–2166 (2003).
  • Chandra H, Srivastava S. Cell-free synthesis-based protein microarrays and their applications. Proteomics10(4), 717–730 (2010).
  • Espina V, Woodhouse EC, Wulfkuhle J, Asmussen HD, Petricoin EF III, Liotta LA. Protein microarray detection strategies: focus on direct detection technologies. J. Immunol. Methods290(1–2), 121–133 (2004).
  • Angenendt P. Progress in protein and antibody microarray technology. Drug Discov. Today10(7), 503–511 (2005).
  • Ray S, Chandra H, Srivastava S. Nanotechniques in proteomics: current status, promises and challenges. Biosens. Bioelectron.25(11), 2389–2401 (2010).
  • Yan J, Estévez MC, Smith JE et al. Dye-doped nanoparticles for bioanalysis. Nano Today2(3), 44–50 (2007).
  • Ray S, Mehta G, Srivastava S. Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics10(4), 731–748 (2010).
  • Wolf-Yadlin A, Sevecka M, MacBeath G. Dissecting protein function and signaling using protein microarrays. Curr. Opin. Chem. Biol.13(4), 398–405 (2009).
  • Hall DA, Ptacek J, Snyder M. Protein microarray technology. Mech. Ageing Dev.128(1), 161–167 (2007).
  • Walter JG, Kokpinar O, Friehs K, Stahl F, Scheper T. Systematic investigation of optimal aptamer immobilization for protein-microarray applications. Anal. Chem.80(19), 7372–7378 (2008).
  • Renberg B, Nordin J, Merca A et al. Affibody molecules in protein capture microarrays: evaluation of multidomain ligands and different detection formats. J. Proteome Res.6(1), 171–179 (2007).
  • Sanchez-Carbayo M. Antibody arrays: technical considerations and clinical applications in cancer. Clin. Chem.52(9), 1651–1659 (2006).
  • Shafer MW, Mangold L, Partin AW, Haab BB. Antibody array profiling reveals serum TSP-1 as a marker to distinguish benign from malignant prostatic disease. Prostate67(3), 255–267 (2007).
  • Robinson WH, DiGennaro C, Hueber W et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med.8(3), 295–301 (2002).
  • Chen S, Zheng T, Shortreed MR, Alexander C, Smith LM. Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Anal. Chem.79(15), 5698–5702 (2007).
  • Chan SM, Ermann J, Su L, Fathman CG, Utz PJ. Protein microarrays for multiplex analysis of signal transduction pathways. Nat. Med.10(12), 1390–1396 (2004).
  • Ehrlich JR, Qin S, Liu BC. The ‘reverse capture’ autoantibody microarray: a native antigen-based platform for autoantibody profiling. Nat. Protoc.1(1), 452–460 (2006).
  • Sheehan KM, Calvert VS, Kay EW et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol. Cell Proteomics4(4), 346–355 (2005).
  • Grubb RL, Calvert VS, Wulkuhle JD et al. Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics3(11), 2142–2146 (2003).
  • Akkiprik M, Nicorici D, Cogdell D et al. Dissection of signaling pathways in fourteen breast cancer cell lines using reverse-phase protein lysate microarray. Technol. Cancer Res. Treat.5(6), 543–551 (2006).
  • Espina V, Liotta LA, Petricoin EF III. Reverse-phase protein microarrays for theranostics and patient tailored therapy. Methods Mol. Biol.520, 89–105 (2009).
  • Bertone P, Snyder M. Advances in functional protein microarray technology. FEBS J.272(21), 5400–5411 (2005).
  • Issaq HJ, Chan KC, Janini GM, Conrads TP, Veenstra TD. Multidimensional separation of peptides for effective proteomic analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.817(1), 35–47 (2005).
  • He M, Taussig MJ. Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method). Nucleic Acids Res.29(15), E73–E73 (2001).
  • Schwenk JM, Gry M, Rimini R, Uhlén M, Nilsson P. Antibody suspension bead arrays within serum proteomics. J. Proteome Res.7(8), 3168–3179 (2008).
  • Wong J, Sibani S, Lokko NN, LaBaer J, Anderson KS. Rapid detection of antibodies in sera using multiplexed self-assembling bead arrays. J. Immunol. Methods350(1–2), 171–182 (2009).
  • Elshal MF, McCoy JP. Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods38(4), 317–323 (2006).
  • Nolan JP, Sklar LA. Suspension array technology: evolution of the flat-array paradigm. Trends Biotechnol.20(1), 9–12 (2002).
  • Ramachandran N, Raphael JV, Hainsworth E et al. Next-generation high-density self-assembling functional protein arrays. Nat. Methods5(6), 535–538 (2008).
  • Beare PA, Chen C, Bouman T et al. Candidate antigens for Q fever serodiagnosis revealed by immunoscreening of a Coxiella burnetii protein microarray. Clin. Vaccine Immunol.15(12), 1771–1779 (2008).
  • Lopez JE, Beare PA, Heinzen RA et al. High-throughput identification of T-lymphocyte antigens from Anaplasma marginale expressed using in vitro transcription and translation. J. Immunol. Methods332(1–2), 129–141 (2008).
  • Hurst R, Hook B, Slater MR, Hartnett J, Storts DR, Nath N. Protein–protein interaction studies on protein arrays: effect of detection strategies on signal-to-background ratios. Anal. Biochem.392(1), 45–53 (2009).
  • Mei Q, Fredrickson CK, Jin S, Fan ZH. Toxin detection by a miniaturized in vitro protein expression array. Anal. Chem.77(17), 5494–5500 (2005).
  • Meng L, Michaud GA, Merkel JS et al. Protein kinase substrate identification on functional protein arrays. BMC Biotechnol.8, 22 (2008).
  • Ptacek J, Devgan G, Michaud G et al. Global analysis of protein phosphorylation in yeast. Nature438(7068), 679–684 (2005).
  • Chen Z, Tabakman SM, Goodwin AP et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol.26(11), 1285–1292 (2008).
  • Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science301(5641), 1884–1886 (2003).
  • Thaxton CS, Elghanian R, Thomas AD et al. Nanoparticle-based bio-barcode assay redefines ‘undetectable’ PSA and biochemical recurrence after radical prostatectomy. Proc. Natl Acad. Sci. USA106(44), 18437–18442 (2009).
  • Edwards BS, Oprea T, Prossnitz ER, Sklar LA. Flow cytometry for high-throughput, high-content screening. Curr. Opin. Chem. Biol.8(4), 392–398 (2004).
  • Gantelius J, Hartmann M, Schwenk JM, Roeraade J, Andersson-Svahn H, Joos TO. Magnetic bead-based detection of autoimmune responses using protein microarrays. Nat. Biotechnol.26(6), 269–276 (2009).
  • Morozov VN, Morozova TY. Active bead-linked immunoassay on protein microarrays. Anal. Chim. Acta564(1), 40–52 (2006).
  • Miller JC, Zhou H, Kwekel J et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics3(1), 56–63 (2003).
  • Haab BB. Methods and applications of antibody microarrays in cancer research. Proteomics3(11), 2116–2122 (2003).
  • Srivastava M, Eidelman O, Jozwik C et al. Serum proteomic signature for cystic fibrosis using an antibody microarray platform. Mol. Genet. Metab.87(4), 303–310 (2006).
  • Sreekumar A, Nyati MK, Varambally S et al. Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res.61(20), 7585–7593 (2001).
  • Lin Y, Huang R, Santanam N, Liu YG, Parthasarathy S, Huang RP. Profiling of human cytokines in healthy individuals with vitamin E supplementation by antibody array. Cancer Lett.187(1–2), 17–24 (2002).
  • Nielsen UB, Cardone MH, Sinskey AJ, MacBeath G, Sorger PK. Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc. Natl Acad. Sci. USA100(16), 9330–9335 (2003).
  • Schweitzer B, Kingsmore SF. Measuring proteins on microarrays. Curr. Opin. Biotechnol.13(1), 14–19 (2002).
  • Shao W, Zhou Z, Laroche I et al. Optimization of rolling-circle amplified protein microarrays for multiplexed protein profiling. J. Biomed. Biotechnol.2003(5), 299–307 (2003).
  • Zhou H, Bouwman K, Schotanus M et al. Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements. Genome Biol.5(4), R28 (2004).
  • Han XX, Zhao B, Ozaki Y. Surface-enhanced Raman scattering for protein detection. Anal. Bioanal. Chem.394(7), 1719–1727 (2009).
  • Li T, Guo L, Wang Z. Microarray based Raman spectroscopic detection with gold nanoparticle probes. Biosens. Bioelectron.23(7), 1125–1130 (2008).
  • Cao YC, Jin R, Nam JM, Thaxton CS, Mirkin CA. Raman dye-labeled nanoparticle probes for proteins. J. Am. Chem. Soc.125(48), 14676–14677 (2003).
  • Kim D, Daniel WL, Mirkin CA. Microarray-based multiplexed scanometric immunoassay for protein cancer markers using gold nanoparticle probes. Anal. Chem.81(21), 9183–9187 (2009).
  • Liang RQ, Tan CY, Ruan KC. Colorimetric detection of protein microarrays based on nanogold probe coupled with silver enhancement. J. Immunol. Methods285(2), 157–163 (2004).
  • Gao J, Liu D, Wang Z. Microarray-based study of carbohydrate-protein binding by gold nanoparticle probes. Anal. Chem.80(22), 8822–8827 (2008).
  • Gao J, Liu C, Liu D, Wang Z, Dong S. Antibody microarray-based strategies for detection of bacteria by lectin-conjugated gold nanoparticle probes. Talanta81(4–5), 1816–1820 (2010).
  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods5(9), 763–775 (2008).
  • Sun YP, Zhou B, Lin Y et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc.128(24), 7756–7757 (2006).
  • Jokerst JV, Raamanathan A, Christodoulides N et al. Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens. Bioelectron.24(12), 3622–3629 (2009).
  • Hu M, Yan J, He Y et al. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano.4(1), 488–494 (2010).
  • Zajac A, Song D, Qian W, Zhukov T. Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf. B Biointerfaces58(2), 309–314 (2007).
  • Ghazani AA, Lee JA, Klostranec J et al. High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nano Lett.6(12), 2881–2886 (2006).
  • Geho D, Lahar N, Gurnani P et al. Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays. Bioconjug. Chem.16(3), 559–566 (2005).
  • Drbohlavova J, Adam V, Kizek R, Hubalek J. Quantum dots-characterization, preparation and usage in biological systems. Int. J. Mol. Sci.10(2), 656–673 (2009).
  • Wu H, Huo Q, Varnum S et al. Dye-doped silica nanoparticle labels/protein microarray for detection of protein biomarkers. Analyst133(11), 1550–1555 (2008).
  • Wang L, Yang C, Tan W. Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett.5(1), 37–43 (2005).
  • Santra S, Zhang P, Wang K, Tapec R, Tan W. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem.73(20), 4988–4993 (2001).
  • Deng T, Li JS, Jiang JH, Shen GL, Yu RQ. Preparation of near-IR fluorescent nanoparticles for fluorescence-anisotropy-based immunoagglutination assay in whole blood. Adv. Funct. Mater.16(16), 2147–2155 (2006).
  • Goluch ED, Nam JM, Georganopoulou DG et al. A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab. Chip.6(10), 1293–1299 (2006).
  • Oh BK, Nam JM, Lee SW, Mirkin CA. A fluorophore-based bio-barcode amplification assay for proteins. Small2(1), 103–108 (2006).
  • Stoeva SI, Lee JS, Smith JE, Rosen ST, Mirkin CA. Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. J. Am. Chem. Soc.128(26), 8378–8379 (2006).
  • Faucher S, Martel A, Sherring A et al. Protein bead array for the detection of HIV-1 antibodies from fresh plasma and dried-blood-spot specimens. Clin. Chem.50(7), 1250–1253 (2004).
  • Morgan E, Varro R, Sepulveda H et al. Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin. Immunol.110(3), 252–266 (2004).
  • Sklar LA, Carter MB, Edwards BS. Flow cytometry for drug discovery, receptor pharmacology and high-throughput screening. Curr. Opin. Pharmacol.7(5), 527–534 (2007).
  • Schwenk JM, Lindberg J, Sundberg M, Uhlen M, Nilsson P. Determination of binding specificities in highly multiplexed bead-based assays for antibody proteomics. Mol. Cell Proteomics6(1), 125–132 (2007).
  • Leblanc N, Gantelius J, Schwenk JM et al. Development of a magnetic bead microarray for simultaneous and simple detection of four pestiviruses. J. Virol. Methods155(1), 1–9 (2009).
  • Stahl PL, Gantelius J, Natanaelsson C, Ahmadian A, Andersson-Svahn H, Lundeberg J. Visual DNA – identification of DNA sequence variations by bead trapping. Genomics90(6), 741–745 (2007).
  • Ramachandran N, Larson DN, Stark PR, Hainsworth E, Labaer J. Emerging tools for real-time label-free detection of interactions on functional protein microarrays. FEBS J.272(21), 5412–5425 (2005).
  • Blow N. Proteins and proteomics: life on the surface. Nat. Methods6, 389–393 (2009).
  • Zhu SL, Zhang JB, Lin Yue LY, Hartono D, Liu AQ. Label-free protein detection via gold nanoparticles and localized surface plasmon resonance. Adv. Mat. Res.74, 95–98 (2009).
  • D’Urso OS, De Blasi MD, Manera MG, Latronico MF, Rella R, Poltronieri P. Listeria monocytogenes detection with surface plasmon resonance and protein arrays. IEEE Sens. J.458–461 (2008).
  • Wassaf D, Kuang G, Kopacz K et al. High-throughput affinity ranking of antibodies using surface plasmon resonance microarrays. Anal. Biochem.351(2), 241–253 (2006).
  • Klenkar G, Liedberg B. A microarray chip for label-free detection of narcotics. Anal. Bioanal. Chem.391(5), 1679–1688 (2008).
  • Ladd J, Taylor AD, Piliarik M, Homola J, Jiang S. Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Anal. Bioanal. Chem.393(4), 1157–1163 (2009).
  • Lausted C, Hu Z, Hood L. Quantitative serum proteomics from surface plasmon resonance imaging. Mol. Cell Proteomics7(12), 2464–2474 (2008).
  • Inoue Y, Mori T, Yamanouchi G et al. Surface plasmon resonance imaging measurements of caspase reactions on peptide microarrays. Anal. Biochem.375(1), 147–149 (2008).
  • Ouellet E, Lausted C, Lin T, Yang CW, Hood L, Lagally ET. Parallel microfluidic surface plasmon resonance imaging arrays. Lab. Chip.10(5), 581–588 (2010).
  • Srivastava S, Labaer J. Nanotubes light up protein arrays. Nat. Biotechnol.26(11), 1244–1246 (2008).
  • Okuno J, Maehashi K, Kerman K, Takamura Y, Matsumoto K, Tamiya E. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens. Bioelectron.22(9–10), 2377–2381 (2007).
  • Joshi A, Punyani S, Bale SS, Yang H, Borca-Tasciuc T, Kane RS. Nanotube-assisted protein deactivation. Nat. Nanotechnol.3(1), 41–45 (2008).
  • Welsher K, Liu Z, Sherlock SP et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol.4(11), 773–780 (2009).
  • Cid CC, Riu J, Maroto A, Rius FX. Carbon nanotube field effect transistors for the fast and selective detection of human immunoglobulin G. Analyst133(8), 1005–1008 (2008).
  • Villamizar RA, Maroto A, Rius FX, Inza I, Figueras MJ. Fast detection of Salmonella infantis with carbon nanotube field effect transistors. Biosens. Bioelectron.24(2), 279–283 (2008).
  • Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol.23(10), 1294–1301 (2005).
  • Wang WU, Chen C, Lin KH, Fang Y, Lieber CM. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl Acad. Sci. USA102(9), 3208–3212 (2005).
  • Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM. Electrical detection of single viruses. Proc. Natl Acad. Sci. USA101(39), 14017–14022 (2004).
  • Brammer KS, Choi C, Oh S et al. Antibiofouling, sustained antibiotic release by Si nanowire templates. Nano Lett.9(10), 3570–3574 (2009).
  • Hwang KS, Lee S, Kim SK, Lee JH, Kim TS. Micro- and nanocantilever devices and systems for biomolecule detection. Annu. Rev. Anal. Chem.2, 77–98 (2009).
  • Braun T, Ghatkesar MK, Backmann N et al. Quantitative time-resolved measurement of membrane protein–ligand interactions using microcantilever array sensors. Nat. Nanotechnol.4(3), 179–185 (2009).
  • Sarphie D. Nanomechanical cantilever biosensors: a springboard to novel antibiotics. Innovations in Pharmaceutical Technology29, 12–17 (2009)
  • Wee KW, Kang GY, Park J et al. Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens. Bioelectron.20(10), 1932–1938 (2005).
  • Yue M, Stachowiak JC, Lin H, Datar R, Cote R, Majumdar A. Label-free protein recognition two-dimensional array using nanomechanical sensors. Nano Lett.8(2), 520–524 (2008).
  • Braun T, Backmann N, Vogtli M et al. Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors. Biophys. J.90(8), 2970–2977 (2006).
  • Huber F, Lang HP, Hegner M, Despont M, Drechsler U, Gerber C. Analyzing refractive index changes and differential bending in microcantilever arrays. Rev. Sci. Instrum.79(8), 086110 (2008).
  • Dauksaite V, Lorentzen M, Besenbacher F, Kjems J. Antibody-based protein detection using piezoresistive cantilever arrays. Nanotechnology18(18), 125503 (2007).
  • Zhang H, Wu G, Tu H, Huang F. Discovery of serum biomarkers in astrocytoma by SELDI-TOF MS and proteinchip technology. J. Neurooncol.84(3), 315–323 (2007).
  • Zhu XD, Zhang WH, Li CL, Xu Y, Liang WJ, Tien P. New serum biomarkers for detection of HBV-induced liver cirrhosis using SELDI protein chip technology. World J. Gastroenterol.10(16), 2327–2329 (2004).
  • Grus FH, Podust VN, Bruns K et al. SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Invest. Ophthalmol. Vis. Sci.46(3), 863–876 (2005).
  • Cui JF, Liu YK, Zhou HJ et al. Screening serum hepatocellular carcinoma-associated proteins by SELDI-based protein spectrum analysis. World J. Gastroenterol.14(8), 1257–1262 (2008).
  • Mannello F, Medda V, Tonti GA. Protein profile analysis of the breast microenvironment to differentiate healthy women from breast cancer patients. Expert Rev. Proteomics6(1), 43–60 (2009).
  • Liu Y, Wang H, Huang J, Yang J, Liu B, Yang P. Microchip-based ELISA strategy for the detection of low-level disease biomarker in serum. Anal. Chim. Acta650(1), 77–82 (2009).
  • Breitenstein M, Holzel R, Bier FF. Immobilization of different biomolecules by atomic force microscopy. J. Nanobiotechnology.8, 10 (2010).
  • Soultani-Vigneron S, Dugas V, Rouillat MH et al. Immobilisation of oligo-peptidic probes for microarray implementation: characterisation by FTIR, atomic force microscopy and 2D fluorescence. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.822(1–2), 304–310 (2005).
  • Lynch M, Mosher C, Huff J, Nettikadan S, Johnson J, Henderson E. Functional protein nanoarrays for biomarker profiling. Proteomics4(6), 1695–1702 (2004).
  • Lee M, Kang DK, Yang HK et al. Protein nanoarray on Prolinker surface constructed by atomic force microscopy dip-pen nanolithography for analysis of protein interaction. Proteomics6(4), 1094–1103 (2006).
  • Lian W, Litherland SA, Badrane H et al. Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal. Biochem.334(1), 135–144 (2004).
  • Lee W, Lee JH, Oh BK, Choi JW. Detection of human serum albumin on protein array using scanning tunneling microscopy. Ultramicroscopy110(6), 723–728 (2010).
  • Kanga D, Janga Y, Leea J, Kimb S, Oha B, Choi J. Electrical detection of prostate specific antigen on protein array using scanning tunneling microscopy. Curr. Appl. Phys.9(2), e33–e37 (2009).
  • Yang L, Li Y, Erf GF. Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. Anal. Chem.76(4), 1107–1113 (2004).
  • Xu H, Mao X, Zeng Q, Wang S, Kawde AN, Liu G. Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal. Chem.81(2), 669–675 (2009).
  • Komarova E, Reber K, Aldissi M, Bogomolova A. New multispecific array as a tool for electrochemical impedance spectroscopy-based biosensing. Biosens. Bioelectron.25(6), 1389–1394 (2010).
  • Nedelkov D, Nelson RW. Practical considerations in BIA/MS: optimizing the biosensor-mass spectrometry interface. J. Mol. Recognit.13(3), 140–145 (2000).
  • Ozkumur E, Needham JW, Bergstein DA et al. Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications. Proc. Natl Acad. Sci. USA105(23), 7988–7992 (2008).
  • Joo C, Ozkumur E, Unlu MS, Boer JF. Spectral-domain optical coherence phase microscopy for label-free multiplexed protein microarray assay. Biosens. Bioelectron.25(2), 275–281 (2009).
  • Zhu H, Bilgin M, Bangham R et al. Global analysis of protein activities using proteome chips. Science293(5537), 2101–2105 (2001).
  • Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A. Protein microchips: use for immunoassay and enzymatic reactions. Anal. Biochem.278(2), 123–131 (2000).
  • Heijmans-Antonissen C, Wesseldijk F, Munnikes RJ et al. Multiplex bead array assay for detection of 25 soluble cytokines in blister fluid of patients with complex regional pain syndrome type 1. Mediators Inflamm.2006(1), 28398 (2006).
  • Khan SS, Smith MS, Reda D, Suffredini AF, McCoy JP Jr. Multiplex bead array assays for detection of soluble cytokines: comparisons of sensitivity and quantitative values among kits from multiple manufacturers. Cytometry B. Clin. Cytom.61(1), 35–39 (2004).
  • Konry T, Hayman RB, Walt DR. Microsphere-based rolling circle amplification microarray for the detection of DNA and proteins in a single assay. Anal. Chem.81(14), 5777–5782 (2009).
  • Hiep HM, Endo Y, Kerman K et al. A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Sci. Technol. Adv. Mater.8, 331 (2007).
  • Wu G, Datar RH, Hansen KH, Thundat T, Cote RJ, Majumdar A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol.19, 856–860 (2001).
  • Lee K, Kim E, Mirkin CA, Wolinsky SM. The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type 1 in plasma. Nano Lett.4 (10), 1869–1872 (2004).
  • Vorderwülbecke S, Cleverley S, Weinberger SR, Wiesner A. Protein quantification by the SELDI-TOF-MS-based ProteinChip® System. Nat. Methods2, 393–395 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.