196
Views
17
CrossRef citations to date
0
Altmetric
Review

The SODyssey: superoxide dismutases from biochemistry, through proteomics, to oxidative stress, aging and nutraceuticals

&
Pages 405-421 | Published online: 09 Jan 2014

References

  • Kresge N, Simoni RD, Hill RL. Forty years of superoxide dismutase research: the work of Irwin Fridovich. J. Biol. Chem.281(22), 17–19 (2006).
  • McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem.244(22), 6049–6055 (1969).
  • Bannister JV, Bannister WH, Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem.22(2), 111–180 (1987).
  • Miller AF. Superoxide dismutases: active sites that save, but a protein that kills. Curr. Opin. Chem. Biol.8(2), 162–168 (2004).
  • Perry JJP, Shin DS, Getzoff ED, Tainer JA. The structural biochemistry of the superoxide dismutases. Biochim. Biophys. Acta1804, 245–262 (2010).
  • Bannister WH, Bannister JV. Isolation and characterization of superoxide dismutase: a personal history and tribute to Joe McCord and Irwin Fridovich. Free Radic. Biol. Med.5(5–6), 371–376 (1988).
  • Mann T, Keilin D. Haemocuprein and hepatocuprein, copper-protein compounds of blood and liver in mammals. Proc. R. Soc. London Ser. B.126(844), 303–315 (1938).
  • Porter H, Folch J, Cerebrocuprein I. A copper-containing protein isolated from brain. J. Neurochem.1(3), 260–271 (1957).
  • Carrico RJ, Deutsch HF. Isolation of human hepatocuprein and cerebrocuprein. Their identity with erythrocuprein. J. Biol. Chem.244(22), 6087–6093 (1969).
  • Keele BB Jr, McCord JM, Fridovich I. Superoxide dismutase from Escherichia coli B. A new manganese-containing enzyme. J. Biol. Chem.245(22), 6176–6181 (1970).
  • Yost FJ, Fridovich I. An iron-containing superoxide dismutase from Escherichia coli.J. Biol. Chem.248, 4905 (1973).
  • Fridovich I. Superoxide dismutases. Adv. Enzymol.41, 35–97 (1974).
  • Bray RC, Cockle SA, Fielden EM et al. Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem. J.139(1), 43–48 (1974).
  • Misra HP, Fridovich I. Inhibition of superoxide dismutase by azide. Arch. Biochem. Biophys.189, 317 (1978).
  • Knowles PF, Gibson JF, Pick FM, Bray RC. Electron-spin-resonance evidence for enzymic reduction of oxygen to a free radical, the superoxide ion. Biochem. J.111(1), 53–58 (1969).
  • Weisiger RA, Fridovich I. Superoxide dismutase. Organelle specificity. J. Biol. Chem.248(10), 3582–3592 (1973).
  • McCord JM, Keele BB Jr, Fridovich I. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc. Natl Acad. Sci. USA68(5), 1024–1027 (1971).
  • Bell GR. Studies on electron transfer system in Desulfovibrio: purification of hydrogenase. catalase and superoxide dismutase. PhD thesis, University of Georgia, Athens, Greece, 206–208 (1973).
  • Hewitt J, Morris JG. Superoxide dismutase in some obligately anaerobic bacteria. FEBS Lett.50(3), 315–315 (1975).
  • Norrod P, Morse SA. Absence of superoxide dismutase in some strains of Neisseria gonorrhoeae.Biochem. Biophys. Res. Commun.90(4), 1287–1294 (1979).
  • Richardson JS, Thomas KA, Rubin BH, Richardson DC. Crystal structure of bovine Cu,Zn superoxide dismutase at 3Å resolution: chain tracing and metal ligands. Proc. Natl Acad. Sci. USA72(4), 1349–1353 (1975).
  • Getzoff ED, Tainer JA, Weiner PK et al. Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature306(5940), 287–290 (1983).
  • Tainer JA, Getzoff ED, Richardson JS, Richardson DC. Structure and mechanism of copper, zinc superoxide dismutase. Nature306(5940), 284–287 (1983).
  • Borgstahl GE, Parge HE, Hickey MJ et al. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell71(1), 107–118 (1992).
  • Lynch RE, Cole BC. Mycoplasma pneumoniae: a prokaryote which consumes oxygen and generates superoxide but which lacks superoxide dismutase. Biochem. Biophys. Res. Commun.96(1), 98–105 (1980).
  • Carlioz A, Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J.5, 623–630 (1986).
  • Parge HE, Hallewell RA, Tainer JA. Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase. Proc. Natl Acad. Sci. USA89, 6109–6113 (1992).
  • Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic. Biol. Med.47(4), 344–356 (2009).
  • Barondeau DP, Kassmann CJ, Bruns CK et al. Nickel superoxide dismutase structure and mechanism. Biochemistry43(25), 8038–8047 (2004).
  • Wuerges J, Lee JW, Yim YI, Yim HS, Kang SO, Djinovic Carugo K. Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc. Natl Acad. Sci. USA101(23), 8569–8574 (2004).
  • Herbst RW, Guce A, Bryngelson PA et al. Role of conserved tyrosine residues in NiSOD catalysis: a case of convergent evolution. Biochemistry48(15), 3354–3369 (2009).
  • Fridovich I. The biology of oxygen radicals. Science201(4359), 875–880 (1978).
  • McCord JM, Fridovich I. The biology and pathology of oxygen radicals. Ann. Intern. Med.89(1), 122–127 (1978).
  • Eastgate J, Moreb J, Nick HS et al. A role for manganese superoxide dismutase in radioprotection of hematopoietic stem cells by interleukin-1. Blood81, 639–646 (1993).
  • Akashi M, Hachiya M, Paquette RL et al. Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts. Possible mechanisms for its accumulation. J. Biol. Chem.270, 15864–15869 (1995).
  • Fujii J, Taniguchi N. Phorbol ester induces manganese-superoxide dismutase in tumor necrosis factor resistant cells. J. Biol. Chem.266, 23142–23146 (1991).
  • Harris CA, Derbin KS, Hunte-McDonough B et al. Manganese superoxide dismutase is induced by IFN-γ in multiple cell types. Synergistic induction by IFN-γ and tumor necrosis factor or IL-1. J. Immunol.147, 149–154 (1991).
  • Wong GH, Elwell JH, Oberley LW, Goeddel DV. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell58, 923–931 (1988).
  • Wong GH, Goeddel DV. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science242, 941–944 (1988).
  • Visner GA, Dougall WC, Wilson JM et al. Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response. J. Biol. Chem.265, 2856–2864 (1990).
  • Dougall WC, Nick HS. Manganese superoxide dismutase: a hepatic acute phase protein regulated by interleukin-6 and glucocorticoids. Endocrinology129, 2376–2384 (1991).
  • Pasini EM, Kirkegaard M, Mortensen P et al. In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood108, 791–801 (2006).
  • Roux-Dalvai F, Gonzalez de Peredo A, Simó C et al. Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry. Mol. Cell Proteomics7(11), 2254–2269 (2008).
  • Goodman SR, Kurdia A, Ammann L et al. The human red blood cell proteome and interactome. Exp. Biol. Med.232, 1391–1408 (2007).
  • D’Alessandro A, Righetti PG, Zolla L. The red blood cell proteome and interactome: an update. J. Proteome Res.9(1), 144–163 (2010).
  • Winterbourn CC, Hawkins RE, Brian M, Carrell RW. The estimation of red cell superoxide dismutase activity. J. Lab. Clin. Med.85(2), 337–341 (1975).
  • Sutton HC, Roberts PB, Winterbourn CC. The rate of reaction of superoxide radical ion with oxyhaemoglobin and methaemoglobin. Biochem. J.155(3), 503–510 (1976).
  • Bartosz G, Fried R, Grzelińska E, Leyko W. Effect of hyperoxide radicals on bovine-erythrocyte membrane. Eur. J. Biochem.73(1), 261–264 (1977).
  • Watanabe H, Kobayashi A, Yamamoto T et al. Alterations of human erythrocyte membrane fluidity by oxygen-derived free radicals and calcium. Free Radic. Biol. Med.8(6), 507–514 (1990).
  • Aslan R, Sekeroğlu MR, Tarakçioğlu M, Köylü H. Investigation of malondialdehyde formation and antioxidant enzyme activity in stored blood. Haematologia28(4), 233–237 (1997).
  • Korgun DK, Bilmen S, Yesilkaya A. Alterations in the erythrocyte antioxidant system of blood stored in blood bags. Res. Commun. Mol. Pathol. Pharmacol.109(5–6), 357–363 (2001).
  • Kanias T, Acker JP. Biopreservation of red blood cells – the struggle with hemoglobin oxidation. FEBS J.277(2), 343–356 (2010).
  • Racek J, Herynkova R, Holecek V et al. Influence of antioxidants on the quality of stored blood. Vox. Sang.72, 16–19 (1997).
  • Högman CF, de Verdier CH, Ericson A et al. Effects of oxygen on red cells during liquid storage at +4 degrees C. Vox. Sang.51(1), 27–34 (1986).
  • Yoshida T, AuBuchon JP, Tryzelaar L et al. Extended storage of red blood cells under anaerobic conditions. Vox. Sang.92, 22–31 (2007).
  • D’Amici GM, Rinalducci S, Zolla L. Proteomic analysis of RBC membrane protein degradation during blood storage. J. Prot. Res.6, 3242–3255 (2007).
  • Mattei JF, Baeteman MA, Baret A et al. Erythrocyte superoxide dismutase and redox enzymes in trisomy 21. Acta Paediatr. Scand.71, 589 (1982).
  • Sinet PM, Lavelle F, Michelson AM, Jerome H. Superoxide dismutase activities of blood platelets in trisomy 21. Biochem. Biophys. Res. Commun.67, 904 (1975).
  • Feaster WW, Kwok LW, Epstein CJ. Dosage effects for superoxide dismutase-1 in nucleated cells aneuploid for chromosome 21. Am. J. Hum. Genet.29(6), 563–570 (1977).
  • Frischer H, Chu LK, Ahmad T, Justice P, Smith GF. Superoxide dismutase and glutathione peroxidase abnormalities in erythrocytes and lymphoid cells in Down’s syndrome. Prog. Clin. Biol. Res.55, 269–289 (1981).
  • Koster MP, Pennings JL, Imholz S et al. Bead-based multiplexed immunoassays to identify new biomarkers in maternal serum to improve first trimester Down syndrome screening. Prenat. Diagn.29(9), 857–862 (2009).
  • Shin JH, Krapfenbauer K, Lubec G. Mass-spectrometrical analysis of proteins encoded on chromosome 21 in human fetal brain. Amino Acids31(4), 435–447 (2006).
  • Gulesserian T, Engidawork E, Fountoulakis M, Lubec G. Antioxidant proteins in fetal brain: superoxide dismutase-1 (SOD-1) protein is not overexpressed in fetal Down syndrome. J. Neural Transm. Suppl.61, 71–84 (2001).
  • Krapfenbauer K, Engidawork E, Cairns N et al. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res.967(1–2), 152–160 (2003).
  • Lehtinen MK, Bonni A. Modeling oxidative stress in the central nervous system. Curr. Mol. Med.6(8), 871–881 (2006).
  • Gardiner J, Barton D, Overall R, Marc J. Neurotrophic support and oxidative stress: converging effects in the normal and diseased nervous system. Neuroscientist15(1), 47–61 (2009).
  • Perry JJ, Shin DS, Tainer JA. Amyotrophic lateral sclerosis. Adv. Exp. Med. Biol.685, 9–20 (2010).
  • Deng HX, Hentati A, Tainer JA et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science261(5124), 1047–1051 (1993).
  • Wroe R, Wai-Ling Butler A, Andersen PM et al. ALSOD: the Amyotrophic Lateral Sclerosis Online Database. Amyotroph Lateral Scler.9(4), 249–250 (2008).
  • Kabuta T, Kinugawa A, Tsuchiya Y et al. Familial amyotrophic lateral sclerosis-linked mutant SOD1 aberrantly interacts with tubulin. Biochem. Biophys. Res. Commun.387, 121–126 (2009).
  • Steinacker P, Hawlik A, Lehnert S et al. Neuroprotective function of cellular prion protein in a mouse model of amyotrophic lateral sclerosis. Am. J. Pathol.176(3), 1409–1420 (2010).
  • Zhai J, Ström AL, Kilty R et al. Proteomic characterization of lipid raft proteins in amyotrophic lateral sclerosis mouse spinal cord. FEBS J.276(12), 3308–3323 (2009).
  • Bergemalm D, Forsberg K, Srivastava V et al. Superoxide dismutase-1 and other proteins in inclusions from transgenic amyotrophic lateral sclerosis model mice. J. Neurochem.114(2), 408–418 (2010).
  • Baillet A, Chanteperdrix V, Trocmé C et al. The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem Res.35(10), 1530–1537 (2010).
  • Bonnefont-Rousselot D, Lacomblez L, Jaudon M et al. Blood oxidative stress in amyotrophic lateral sclerosis. J. Neurol. Sci.178(1), 57–62 (2000).
  • Shi P, Wei Y, Zhang J et al. Mitochondrial dysfunction is a converging point of multiple pathological pathways in amyotrophic lateral sclerosis. J. Alzheimers Dis.20(2), 311–324 (2010).
  • Valentine JS, Doucette PA, Zittin Potter S. Copper–zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu. Rev. Biochem.74, 563–593 (2005).
  • Hinerfeld D, Traini MD, Weinberger RP et al. Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J. Neurochem.88(3), 657–667 (2004).
  • Smith RA, Miller TM, Yamanaka K et al. Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Invest.116(8), 2290–2296 (2006).
  • Castegna A, Aksenov M, Aksenova M et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic. Biol. Med.33(4), 562–571 (2002).
  • Butterfield DA, Boyd-Kimball D. Amyloid β-peptide(1–42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathol.14(4), 426–432 (2004).
  • Butterfield DA, Perluigi M, Sultana R. Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur. J. Pharmacol.545(1), 39–50 (2006).
  • Opii WO, Joshi G, Head E et al. Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer’s disease. Neurobiol. Aging29(1), 51–70 (2008).
  • Tsang AH, Chung KK. Oxidative and nitrosative stress in Parkinson’s disease. Biochim. Biophys. Acta1792(7), 643–650 (2009).
  • Guo J, Sun Z, Xiao S et al. Proteomic analysis of the cerebrospinal fluid of Parkinson’s disease patients. Cell Res.19(12), 1401–1403 (2009).
  • Sinha A, Srivastava N, Singh S et al. Identification of differentially displayed proteins in cerebrospinal fluid of Parkinson’s disease patients: a proteomic approach. Clin. Chim. Acta400(1–2), 14–20 (2009).
  • Akbostanci MC, Kocatürk PA, Tan FU, Kavas GO. Erythrocyte superoxide dismutase activity differs in clinical subgroups of Parkinson’s disease patients. Acta Neurol. Belg.101(3), 180–183 (2001).
  • Tórsdóttir G, Sveinbjörnsdóttir S, Kristinsson J et al. Ceruloplasmin and superoxide dismutase (SOD1) in Parkinson’s disease: a follow-up study. J. Neurol. Sci.241(1–2), 53–58 (2006).
  • Werner CJ, Heyny-von Haussen R, Mall G, Wolf S. Proteome analysis of human substantia nigra in Parkinson’s disease. Proteome Sci.6, 8 (2008).
  • Basso M, Giraudo S, Corpillo D et al. Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics4(12), 3943–3952 (2004).
  • Carrillo MC, Minami C, Kitani K et al. Enhancing effect of rasagiline on superoxide dismutase and catalase activities in the dopaminergic system in the rat. Life Sci.67(5), 577–585 (2000).
  • The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell72(6), 971–983 (1993).
  • Perez-De La Cruz V, Santamaria A. Integrative hypothesis for Huntington’s disease: a brief review of experimental evidence. Physiol. Res.56(5), 513–526 (2007).
  • Sorolla MA, Reverter-Branchat G, Tamarit J et al. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic. Biol. Med.45(5), 667–678 (2008).
  • Sorolla MA, Rodríguez-Colman MJ, Tamarit J et al. Protein oxidation in Huntington disease affects energy production and vitamin B6 metabolism. Free Radic. Biol. Med.49(4), 612–621 (2010).
  • Lund-Olesen K. Etiology of multiple sclerosis: role of superoxide dismutase. Med. Hypotheses54(2), 321–322 (2000).
  • Namaki S, Mohsenzadegan M, Mirshafiey A. Superoxide dismutase: a light horizon in treatment of multiple sclerosis. J. Chin. Clin. Med.10(4), 10 (2009).
  • Zagórski T, Dudek I, Berkan L et al. [Superoxide dismutase (SOD-1) activity in erythrocytes of patients with multiple sclerosis]. Neurol. Neurochir. Pol.25(6), 725–730 (1991).
  • Dumont D, Noben JP, Raus J et al. Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients. Proteomics4(7), 2117–2124 (2004).
  • Liu S, Bai S, Qin Z et al. Quantitative proteomic analysis of the cerebrospinal fluid of patients with multiple sclerosis. J. Cell Mol. Med.13(8A), 1586–1603 (2009).
  • Stoop MP, Singh V, Dekker LJ et al. Proteomics comparison of cerebrospinal fluid of relapsing remitting and primary progressive multiple sclerosis. PLoS One5(8), e12442 (2010).
  • Prabakaran S, Wengenroth M, Lockstone HE et al. 2-D DIGE analysis of liver and red blood cells provides further evidence for oxidative stress in schizophrenia. J. Proteome Res.6(1), 141–149 (2007).
  • Yao JK, Reddy R, van Kammen DP. Abnormal age-related changes of plasma antioxidant proteins in schizophrenia. Psychiatry Res.97(2–3), 137–151 (2000).
  • Dietrich-Muszalska A, Olas B. Modifications of blood platelet proteins of patients with schizophrenia. Platelets20(2), 90–96 (2009).
  • Zhang XY, Tan YL, Cao LY et al. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr. Res.81(2–3), 291–300 (2006).
  • Herken H, Gurel A, Selek S et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch. Med. Res.38(2), 247–252 (2007).
  • Russo AJ. Increased serum Cu/Zn-SOD in individuals with clinical depression normalizes after zinc and antioxidant therapy. Nutr. Met. Insights3, 37–42 (2010).
  • Selek S, Savas HA, Gergerlioglu HS et al. The course of nitric oxide and superoxide dismutase during treatment of bipolar depressive episode. J. Affect. Disord.107(1–3), 89–94 (2008).
  • Teyssier JR, Ragot S, Chauvet-Gélinier JC, Trojak B, Bonin B. Expression of oxidative stress-response genes is not activated in the prefrontal cortex of patients with depressive disorder. Psychiatry Res.186(2–3), 244–247 (2010).
  • Martins-de-Souza D, Harris LW, Guest PC et al. The role of proteomics in depression research. Eur. Arch. Psychiatry Clin. Neurosci.260(6), 499–506 (2010).
  • Russo AJ. Increased serum Cu/Zn superoxide dismutase in individuals with anxiety. Proteomics Insights3, 49–354 (2010).
  • Dai Q, Escobar GP, Hakala KW et al. The left ventricle proteome differentiates middle-aged and old left ventricles in mice. J. Proteome Res.7(2), 756–765 (2008).
  • Balestrieri ML, Giovane A, Mancini FP, Napoli C. Proteomics and cardiovascular disease: an update. Curr. Med. Chem.15(6), 555–572 (2008).
  • Ungvari Z, Sonntag WE, Csiszar A. Mitochondria and aging in the vascular system. J Mol Med.88(10), 1021–1027 (2010).
  • Mayr M, Chung YL, Mayr U et al. Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler. Thromb. Vasc. Biol.25(10), 2135–2142 (2005).
  • Yue TL, Cheng HY, Lysko PG et al. Carvedilol, a new vasodilator and β adrenoceptor antagonist, is an antioxidant and free radical scavenger. J. Pharmacol. Exp. Ther.263(1), 92–98 (1992).
  • Weseler AR, Bast A. Oxidative stress and vascular function: implications for pharmacologic treatments. Curr. Hypertens. Rep.12(3), 154–161 (2010).
  • Adam O, Laufs U. Antioxidative effects of statins. Arch. Toxicol.82, 885–892 (2008).
  • Zamboni P, Galeotti R, Menegatti E et al. Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry80(4), 392–399 (2009).
  • Bartolomei I, Salvi F, Galeotti R et al. Hemodynamic patterns of chronic cerebrospinal venous insufficiency in multiple sclerosis. Correlation with symptoms at onset and clinical course. Int. Angiol.29(2), 183–188 (2010).
  • Singh AV, Zamboni P. Anomalous venous blood flow and iron deposition in multiple sclerosis. J. Cereb. Blood Flow Metab.29(12), 1867–1878 (2009).
  • Qiao T, Liu C, Ran F. The impact of gastrocnemius muscle cell changes in chronic venous insufficiency. Eur. J. Vasc. Endovasc. Surg.30(4), 430–436 (2005).
  • Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr. Metab.7, 7 (2010).
  • Warburg O. On the origin of cancer cells. Science123, 309–314 (1956).
  • Seyfried TN, Mukherjee P. Targeting energy metabolism in brain cancer: review and hypothesis. Nutr. Metab.2, 30 (2005).
  • Chen Y, Cairns R, Papandreou I et al. Oxygen consumption can regulate the growth of tumors, a new perspective on the warburg effect. PLoS One4, e7033 (2009).
  • Wang F, Ogasawara MA, Huang P. Small mitochondria-targeting molecules as anti-cancer agents. Mol. Aspects Med.31(1), 75–92 (2010).
  • Sattler UG, Hirschhaeusera F, Mueller-Klieser WF. Manipulation of glycolysis in malignant tumors: fantasy or therapy? Curr. Med. Chem.17(2), 96–108 (2010).
  • Park D, Dilda PJ. Mitochondria as targets in angiogenesis inhibition. Mol. Aspects Med.31(1), 113–131 (2010).
  • Wang HH, Mao CY, Teng LS, Cao J. Recent advances in heat shock protein-based cancer vaccines. Hepatobillary Pancr. Dis. Int.5, 22–27 (2006).
  • Park CK, Jung JH, Moon MJ et al. Tissue expression of manganese superoxide dismutase is a candidate prognostic marker for glioblastoma. Oncology77(3–4), 178–181 (2009).
  • Sandoval JA, Hoelz DJ, Woodruff HA et al. Novel peptides secreted from human neuroblastoma: useful clinical tools? J. Pediatr. Surg.41(1), 245–251 (2006).
  • Hurt EM, Thomas SB, Peng B, Farrar WL. Integrated molecular profiling of SOD2 expression in multiple myeloma. Blood109(9), 3953–3962 (2007).
  • Wang Y, Chiu JF. Proteomic approaches in understanding action mechanisms of metal-based anticancer drugs. Met. Based Drugs.2008, 716329 (2008).
  • Valko M, Rhodes CJ, Moncol J et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact.160(1), 1–40 (2006).
  • Kim JW, Nie B, Sahm H et al. Targeted quantitative analysis of superoxide dismutase 1 in cisplatin-sensitive and cisplatin-resistant human ovarian cancer cells. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.878(7–8), 700–704 (2010).
  • Brown DP, Chin-Sinex H, Nie B et al. Targeting superoxide dismutase 1 to overcome cisplatin resistance in human ovarian cancer. Cancer Chemother. Pharmacol.63(4), 723–730 (2009).
  • Squier TC. Oxidative stress and protein aggregation during biological aging. Exp. Gerontol.36(9), 1539–1550 (2001).
  • Colavitti R, Finkel T. Reactive oxygen species as mediators of cellular senescence. IUBMB Life57(4–5), 277–281 (2005).
  • Ahmed S, Passos JF, Birket MJ et al. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci.121(7), 1046–1053 (2008).
  • Orr WC, Sohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster.Science263(5150), 1128–1130 (1994).
  • Sohal RS, Agarwal A, Agarwal S, Orr WC. Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J. Biol. Chem.270(26), 15671–15674 (1995).
  • Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol.292(1), 18–36 (2007).
  • Huang TT, Carlson EJ, Gillespie AM et al. Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J. Gerontol. A. Biol. Sci. Med. Sci.55(1), B5–B9 (2000).
  • Van Remmen H, Ikeno Y, Hamilton M et al. Life-long reduction in Mn-SOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics16(1), 29–37 (2003).
  • Page MM, Richardson J, Wiens BE et al. Antioxidant enzyme activities are not broadly correlated with longevity in 14 vertebrate endotherm species. Age (Dordr.)32(2), 255–270 (2010).
  • Salway KD, Page MM, Faure PA et al. Enhanced protein repair and recycling are not correlated with longevity in 15 vertebrate endotherm species. Age (Dordr.)33(1), 33–47 (2010).
  • Gomez-Cabrera MC, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic. Biol. Med.44(2), 126–131 (2008).
  • Mitteldorf J. Aging is not a process of wear and tear. Rejuvenation Res.13(2–3), 322–326 (2010).
  • Nikolaidis MG, Jamurtas AZ. Blood as a reactive species generator and redox status regulator during exercise. Arch. Biochem. Biophys.490(2), 77–84 (2009).
  • Ristow M, Zarse K. How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp. Gerontol.45(6), 410–418 (2010).
  • Cobon GS, Verrills N, Papakostopoulos P et al. The proteomics of aging. Biogerontology3, 133–136 (2002).
  • Franco OH, Karnik K, Osborne G et al. Changing course in aging research: the healthy aging phenotype. Maturitas63(1), 13–19 (2009).
  • Onken B, Driscoll M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS One5(1), e8758 (2010).
  • Tullet JM, Hertweck M, An JH et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans.Cell132(6), 1025–1038 (2008).
  • Marrades MP, González-Muniesa P, Arteta D et al. Orchestrated downregulation of genes involved in oxidative metabolic pathways in obese vs. lean high-fat young male consumers. J. Physiol. Biochem.67(1), 15–26 (2010).
  • vel Szic KS, Ndlovu MN et al. Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem. Pharmacol.80(12), 1816–1832 (2010).
  • Ang ET, Tai YK, Lo SQ et al. Neurodegenerative diseases: exercising toward neurogenesis and neuroregeneration. Front Aging Neurosci.2, 25 (2010).
  • Lambert JD, Sang S, Yang CS. Possible controversy over dietary polyphenols: benefits vs risks. Chem. Res. Toxicol.20(4), 583–585 (2007).
  • Huang Z, Zuo L, Zhang Z et al. 3,3´-Diindolylmethane decreases VCAM-1 expression and alleviates experimental colitis via a BRCA1-dependent antioxidant pathway. Free Radic. Biol. Med.50(2), 228–236 (2011).
  • Darvesh AS, Carroll RT, Bishayee A et al. Oxidative stress and Alzheimer’s disease: dietary polyphenols as potential therapeutic agents. Expert Rev. Neurother.10(5), 729–745 (2010).
  • Gollücke AP. Recent applications of grape polyphenols in foods, beverages and supplements. Recent Pat. Food Nutr. Agric.2(2), 105–109 (2010).
  • de la Iglesia R, Milagro FI, Campión J et al. Healthy properties of proanthocyanidins. Biofactors36(3), 159–168 (2010).
  • Es-Safi NE, Ghidouche S, Ducrot PH. Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules12(9), 2228–2258 (2007).
  • Ferrières J. The French paradox: lessons for other countries. Heart90(1), 107–111 (2004).
  • Ramprasath VR, Jones PJ. Anti-atherogenic effects of resveratrol. Eur. J. Clin. Nutr.64(7), 660–668 (2010).
  • Shao C, Chen L, Lu C, Shen CL, Gao W. A gel-based proteomic analysis of the effects of green tea polyphenols on ovariectomized rats. Nutrition27(6), 681–686 (2010).
  • Badawoud MH, Al-Saggaf SM, Hagrasi MM. The effect of green tea on the oxidative stress and blood glucose level of diabetic rats. Med. Sci.14(3), 3–11 (2007).
  • Pavlik VN, Doody RS, Rountree SD, Darby EJ. Vitamin E use is associated with improved survival in an Alzheimer’s disease cohort. Dement. Geriatr. Cogn. Disord.28(6), 536–540 (2009).
  • Binfaré RW, Rosa AO, Lobato KR et al. Ascorbic acid administration produces an antidepressant-like effect: evidence for the involvement of monoaminergic neurotransmission. Prog. Neuropsychopharmacol. Biol. Psychiatry.33(3), 530–540 (2009).
  • Skarupski KA, Tangney C, Li H et al. Longitudinal association of vitamin B-6, folate, and vitamin B-12 with depressive symptoms among older adults over time. Am. J. Clin. Nutr.92(2), 330–335 (2010).
  • Endo N, Nishiyama K, Otsuka A et al. Antioxidant activity of vitamin B6 delays homocysteine-induced atherosclerosis in rats. Br. J. Nutr.95(6), 1088–1093 (2006).
  • Pravst I, Zmitek K, Zmitek J. Coenzyme Q10 contents in foods and fortification strategies. Crit. Rev. Food Sci. Nutr.50(4), 269–280 (2010).
  • Molyneux SL, Young JM, Florkowski CM et al. Coenzyme Q10: is there a clinical role and a case for measurement? Clin. Biochem. Rev.29(2), 71–82 (2008).
  • Linnane AW, Kios M, Vitetta L. The essential requirement for superoxide radical and nitric oxide formation for normal physiological function and healthy aging. Mitochondrion7(1–2), 1–5 (2007).
  • Granados-Principal S, Quiles JL, Ramirez-Tortosa CL et al. New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidant nutrients. Food Chem. Toxicol.48(6), 1425–1438 (2010).
  • Ramos AA, Azqueta A, Pereira-Wilson C, Collins AR. Polyphenolic compounds from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in cultured human cells. J. Agric. Food Chem.58(12), 7465–7471 (2010).
  • Georgiev M, Abrashev R, Krumova E et al. Rosmarinic acid and antioxidant enzyme activities in Lavandula vera MM cell suspension culture: a comparative study. Appl. Biochem. Biotechnol.159(2), 415–425 (2009).
  • Song W, Derito CM, Liu MK et al. Cellular antioxidant activity of common vegetables. J. Agric. Food Chem.58(11), 6621–6629 (2010).
  • Kuriakose GC, Kurup MG. Evaluation of renoprotective effect of Aphanizomenon flos-aquae on cisplatin-induced renal dysfunction in rats. Ren. Fail.30(7), 717–725 (2008).
  • de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem. Soc. Trans.35(5), 1156–1160 (2007).
  • Azam S, Hadi N, Khan NU, Hadi SM. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties. Toxicol. In Vitro18(5), 555–561 (2004).
  • Lozano-Sánchez J, Segura-Carretero A, Menendez JA et al. Prediction of extra virgin olive oil varieties through their phenolic profile. potential cytotoxic activity againstm human breast cancer cells. J. Agric. Food Chem.58(18), 9942–9955 (2010).
  • Conklin KA. Dietary polyunsaturated fatty acids: impact on cancer chemotherapy and radiation. Altern. Med. Rev.7(1), 4–21 (2002).
  • Aquilano K, Filomeni G, Baldelli S et al. Neuronal nitric oxide synthase protects neuroblastoma cells from oxidative stress mediated by garlic derivatives. J. Neurochem.101(5), 1327–1337 (2007).
  • Nair S, Hebbar V, Shen G et al. Synergistic effects of a combination of dietary factors sulforaphane and (-) epigallocatechin-3-gallate in HT-29 AP-1 human colon carcinoma cells. Pharm. Res.25(2), 387–399 (2008).
  • Ju J, Picinich SC, Yang Z et al. Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis31(4), 533–542 (2010).
  • Bar-Sela G, Epelbaum R, Schaffer M. Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr. Med. Chem.17(3), 190–197 (2010).
  • Marlowe C. The Tragedy of Dido, Queen of Carthage. In: The Works of Christopher Marlowe. Kessinger Publishing Co., MT, USA, 174 (2004).
  • Alighieri D. Inferno [Hell] Canto. In: The Divine Comedy. The Harvard Classics, MA, USA, XXVI (1909).
  • Koster MP, Pennings JL, Imholz S et al. Proteomics and Down syndrome screening: a validation study. Prenat. Diagn.30(11), 1039–1043 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.