211
Views
16
CrossRef citations to date
0
Altmetric
Perspective

Proteomics moves from expression to turnover: update and future perspective

&
Pages 325-334 | Published online: 09 Jan 2014

References

  • Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis19(11), 1853–1861 (1998).
  • Elliott MH, Smith DS, Parker CE, Borchers C. Current trends in quantitative proteomics. J. Mass Spectrom.44(12), 1637–1660 (2009).
  • Doherty MK, Beynon RJ. Protein turnover on the scale of the proteome. Expert Rev. Proteomics3(1), 97–110 (2006).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17(10), 994–999 (1999).
  • Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ. Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat. Methods2(8), 587–589 (2005).
  • Eagle H, Piez KA, Fleischman R, Oyama VI. Protein turnover in mammaliar cell cultures. J. Biol. Chem.234(3), 592–597 (1959).
  • Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis18(3–4), 533–537 (1997).
  • Chen G, Gharib TG, Huang CC et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol. Cell Proteomics1(4), 304–313 (2002).
  • Mehra A, Lee KH, Hatzimanikatis V. Insights into the relation between mRNA and protein expression patterns: I. Theoretical considerations. Biotechnol. Bioeng.84(7), 822–833 (2003).
  • Lim KL. Ubiquitin–proteasome system dysfunction in Parkinson’s disease: current evidence and controversies. Expert Rev. Proteomics4(6), 769–781 (2007).
  • Yao D, Gu Z, Nakamura T et al. Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl Acad. Sci. USA101(29), 10810–10814 (2004).
  • Riederer IM, Schiffrin M, Kovari E, Bouras C, Riederer BM. Ubiquitination and cysteine nitrosylation during aging and Alzheimer’s disease. Brain Res. Bull.80(4–5), 233–241 (2009).
  • Upadhya SC, Hegde AN. Role of the ubiquitin proteasome system in Alzheimer’s disease. BMC Biochem.8(Suppl. 1), S12 (2007).
  • Deng S, Zhou H, Xiong R et al. Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome subunits (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics. Breast Cancer Res. Treat.104(1), 21–30 (2007).
  • White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin. Cancer Res.15(17), 5308–5316 (2009).
  • Caso G, Ford GC, Nair KS, Garlick PJ, McNurlan MA. Aminoacyl-tRNA enrichment after a flood of labeled phenylalanine: insulin effect on muscle protein synthesis. Am. J. Physiol. Endocrinol. Metab.282(5), E1029–E1038 (2002).
  • Johnson HA, Baldwin RL, France J, Calvert CC. Recycling, channeling and heterogeneous protein turnover estimation using a model of whole-body protein turnover based on leucine kinetics in rodents. J. Nutr.129(3), 740–750 (1999).
  • Johnson HA, Baldwin RL, France J, Calvert CC. A model of whole-body protein turnover based on leucine kinetics in rodents. J. Nutr.129(3), 728–739 (1999).
  • Davis TA, Fiorotto ML, Nguyen HV, Burrin DG. Aminoacyl-tRNA and tissue free amino acid pools are equilibrated after a flooding dose of phenylalanine. Am. J. Physiol.277(1 Pt 1), E103–E109 (1999).
  • Papageorgopoulos C, Caldwell K, Shackleton C, Schweingrubber H, Hellerstein MK. Measuring protein synthesis by mass isotopomer distribution analysis (MIDA). Anal. Biochem.267(1), 1–16 (1999).
  • Reeds PJ, Davis TA. Of flux and flooding: the advantages and problems of different isotopic methods for quantifying protein turnover in vivo: I. Methods based on the dilution of a tracer. Curr. Opin. Clin. Nutr. Metab. Care2(1), 23–28 (1999).
  • Rennie MJ. An introduction to the use of tracers in nutrition and metabolism. Proc. Nutr. Soc.58(4), 935–944 (1999).
  • Buse MG, Reid SS. Leucine. A possible regulator of protein turnover in muscle. J. Clin. Invest.56(5), 1250–1261 (1975).
  • Pannemans DL, Wagenmakers AJ, Westerterp KR, Schaafsma G, Halliday D. The effect of an increase of protein intake on whole-body protein turnover in elderly women is tracer dependent. J. Nutr.127(9), 1788–1794 (1997).
  • Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics1(5), 376–386 (2002).
  • Andersen JS, Lam YW, Leung AK et al. Nucleolar proteome dynamics. Nature433(7021), 77–83 (2005).
  • Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M. Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat. Methods7(5), 383–385 (2010).
  • Hanke S, Besir H, Oesterhelt D, Mann M. Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. J. Proteome Res.7(3), 1118–1130 (2008).
  • Mann M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol.7(12), 952–958 (2006).
  • He CY, Merrick BA, Mansfield BK, Hite MC, Daluge DR, Selkirk JK. Comparison of 14C-amino acid mixture and[35S]methionine labeling of cellular proteins from mouse fibroblast C3H10T1/2 cells by two-dimensional gel electrophoresis. Electrophoresis12(9), 658–666 (1991).
  • Pratt JM, Petty J, Riba-Garcia I et al. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell Proteomics1(8), 579–591 (2002).
  • Bouwman F, Renes J, Mariman E. A combination of protein profiling and isotopomer analysis using matrix-assisted laser desorption/ionization-time of flight mass spectrometry reveals an active metabolism of the extracellular matrix of 3T3-L1 adipocytes. Proteomics4(12), 3855–3863 (2004).
  • Cargile BJ, Bundy JL, Grunden AM, Stephenson JL Jr. Synthesis/degradation ratio mass spectrometry for measuring relative dynamic protein turnover. Anal. Chem.76(1), 86–97 (2004).
  • Doherty MK, Whitehead C, McCormack H, Gaskell SJ, Beynon RJ. Proteome dynamics in complex organisms: using stable isotopes to monitor individual protein turnover rates. Proteomics5(2), 522–533 (2005).
  • Busch R, Kim YK, Neese RA et al. Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim. Biophys. Acta1760(5), 730–744 (2006).
  • Hellerstein MK, Neese RA. Mass isotopomer distribution analysis: a technique for measuring biosynthesis and turnover of polymers. Am. J. Physiol.263(5 Pt 1), E988–E1001 (1992).
  • Hellerstein MK, Neese RA. Mass isotopomer distribution analysis at eight years: theoretical, analytic, and experimental considerations. Am. J. Physiol.276(6 Pt 1), E1146–E1170 (1999).
  • Kruger M, Moser M, Ussar S et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell134(2), 353–364 (2008).
  • Price JC, Guan S, Burlingame A, Prusiner SB, Ghaemmaghami S. Analysis of proteome dynamics in the mouse brain. Proc. Natl Acad. Sci. USA107(32), 14508–14513 (2010).
  • Krijgsveld J, Ketting RF, Mahmoudi T et al. Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat. Biotechnol.21(8), 927–931 (2003).
  • Gouw JW, Krijgsveld J, Heck AJR. Quantitative proteomics by metabolic labeling of model organisms. Mol. Cell. Proteomics9(1), 11–24 (2010).
  • Doherty MK, Hammond DE, Clague MJ, Gaskell SJ, Beynon RJ. Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J. Proteome Res.8(1), 104–112 (2009).
  • Schwanhäusser B, Gossen M, Dittmar G, Selbach M. Global analysis of cellular protein translation by pulsed SILAC. Proteomics9(1), 205–209 (2009).
  • Yee JC, Jacob NM, Jayapal KP et al. Global assessment of protein turnover in recombinant antibody producing myeloma cells. J. Biotechnol.148(4), 182–193 (2010).
  • Bunner AE, Williamson JR. Stable isotope pulse-chase monitored by quantitative mass spectrometry applied to E. coli 30S ibosome assembly kinetics. Methods49(2), 136–141 (2009).
  • Jayapal KP, Sui S, Philp RJ et al. Multitagging proteomic strategy to estimate protein turnover rates in dynamic systems. J. Proteome Res.9(5), 2087–2097 (2010).
  • Rao PK, Roxas BAP, Li Q. Determination of global protein turnover in stressed mycobacterium cells using hybrid-linear ion trap-fourier transform mass spectrometry. Anal. Chem.80(2), 396–406 (2008).
  • De Riva A, Deery MJ, McDonald S, Lund T, Busch R. Measurement of protein synthesis using heavy water labeling and peptide mass spectrometry: discrimination between major histocompatibility complex allotypes. Anal. Biochem.403(1–2), 1–12 (2010).
  • Rachdaoui N, Austin L, Kramer E et al. Measuring proteome dynamics in vivo.Mol. Cell. Proteomics8(12), 2653–2663 (2009).
  • Yang XY, Chen WP, Rendahl AK, Hegeman AD, Gray WM, Cohen JD. Measuring the turnover rates of Arabidopsis proteins using deuterium oxide: an auxin signaling case study. Plant J.63(4), 680–695 (2010).
  • Belle A, Tanay A, Bitincka L, Shamir R, O’Shea EK. Quantification of protein half lifes in the budding yeast proteome. Proc. Natl Acad. Sci. USA103(35), 13004–13009 (2006).
  • Tompa P, Prilusky J, Silman I, Sussman JL. Structural disorder serves as a weak signal for intracellular protein degradation. Proteins71(2), 903–909 (2008).
  • Yen HC, Elledge SJ. Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science322(5903), 923–929 (2008).
  • Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods1(1), 39–45 (2004).
  • MacCoss MJ, Wu CC, Liu H, Sadygov R, Yates JR 3rd. A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. Anal. Chem.75(24), 6912–6921 (2003).
  • Mortensen P, Gouw JW, Olsen JV et al. MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J. Proteome Res.9(1), 393–403 (2010).
  • Cox J, Matic I, Hilger M et al. A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat. Protoc.4(5), 698–705 (2009).
  • Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol.26(12), 1367–1372 (2008).
  • Yewdell JW, Lacsina JR, Rechsteiner MC, Nicchitta CV. Out with the old, in with the new? Comparing methods for measuring protein degradation. Cell Biol. Int.35, 457–462 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.