347
Views
20
CrossRef citations to date
0
Altmetric
Review

Magnetic nanoparticles-based digestion and enrichment methods in proteomics analysis

, &
Pages 379-390 | Published online: 09 Jan 2014

References

References

  • Fields S. Proteomics – proteomics in genomeland. Science291(5507), 1221–1224 (2001).
  • Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez JC. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis21(6), 1104–1115 (2000).
  • Anderson NL, Anderson NG. The human plasma proteome – history, character, and diagnostic prospects. Mol. Cell. Proteomics1(11), 845–867 (2002).
  • Gao M, Qi D, Zhang P, Deng C, Zhang X. Development of multidimensional liquid chromatography and application in proteomic analysis. Expert Rev. Proteomics7(5), 665–678 (2010).
  • Gao MX, Deng CH, Yu WJ, Zhang Y, Yang PY, Zhang XM. Large scale depletion of the high-abundance proteins and analysis of middle- and low-abundance proteins in human liver proteome by multidimensional liquid chromatography. Proteomics8(5), 939–947 (2008).
  • Gao M, Guan X, Hong G, Zhang X. [Advances in multidimensional high performance liquid chromatography for separation technology in proteomic study]. Se Pu27(5), 551–555 (2009).
  • Monzo A, Sperling E, Guttman A. Proteolytic enzyme-immobilization techniques for MS-based protein analysis. Trends Anal. Chem.28(7), 854–864 (2009).
  • Alivisatos P. The use of nanocrystals in biological detection. Nat. Biotechnol.22(1), 47–52 (2004).
  • Zrazhevskiy P, Sena M, Gao XH. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev.39(11), 4326–4354 (2010).
  • Wang J. Nanomaterial-based amplified transduction of biomolecular interactions. Small1(11), 1036–1043 (2005).
  • Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Edit.40(22), 4128–4158 (2001).
  • Chiu T-C, Huang L-S, Lin P-C et al. Nanomaterial based affinity matrix-assisted laser desorption/ionization mass spectrometry for biomolecules and pathogenic bacteria. Recent Pat. Nanotechnol.1(2), 99–111 (2007).
  • Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem. Rev.105(4), 1547–1562 (2005).
  • You CC, Chompoosor A, Rotello VM. The biomacromolecule–nanoparticle interface. Nano Today2(3), 34–43 (2007).
  • Xiang MH, Xu X, Liu F, Li N, Li KA. Gold nanoparticle based plasmon resonance light-scattering method as a new approach for glycogen-biomacromolecule interactions. J. Phys. Chem. B. 113(9), 2734–2738 (2009).
  • You CC, Miranda OR, Gider B et al. Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors. Nat. Nanotechnol.2(5), 318–323 (2007).
  • Niamnont N, Mungkarndee R, Techakriengkrai I, Rashatasakhon P, Sukwattanasinitt M. Protein discrimination by fluorescent sensor array constituted of variously charged dendritic phenylene–ethynylene fluorophores. Biosens. Bioelectron.26(2), 863–867 (2010).
  • Dumbrepatil AB, Lee SG, Chung SJ et al. Development of a nanoparticle-based FRET sensor for ultrasensitive detection of phytoestrogen compounds. Analyst135(11), 2879–2886 (2010).
  • Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH, Lee JK. Multifunctional nanoparticles possessing a ‘magnetic motor effect’ for drug or gene delivery. Angew. Chem. Int. Edit.44(7), 1068–1071 (2005).
  • Xu ZG, Feng YY, Liu XY, Guan M, Zhao CD, Zhang HX. Synthesis and characterization of Fe3O4@SiO2@poly-L-alanine, peptide brush-magnetic microspheres through NCA chemistry for drug delivery and enrichment of BSA. Colloid Surf. B Biointerfaces81(2), 503–507 (2010).
  • Nasongkla N, Bey E, Ren JM et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett.6(11), 2427–2430 (2006).
  • Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther.13(4), 283–287 (2006).
  • Zhang G, Feng JH, Lu LH, Zhang BH, Cao LY. Fluorescent magnetic nanoprobes: design and application for cell imaging. J. Colloid Interface Sci.351(1), 128–133 (2010).
  • Yang XQ, Grailer JJ, Rowland IJ et al. Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials31(34), 9065–9073 (2010).
  • Santra S, Dutta D, Walter GA, Moudgil BM. Fluorescent nanoparticle probes for cancer imaging. Technol. Cancer Res. Treat.4(6), 593–602 (2005).
  • Jun YW, Lee JH, Cheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Edit.47(28), 5122–5135 (2008).
  • Parak WJ, Gerion D, Pellegrino T et al. Biological applications of colloidal nanocrystals. Nanotechnology14(7), R15–R27 (2003).
  • Katz E, Willner I. Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Edit.43(45), 6042–6108 (2004).
  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science277(5329), 1078–1081 (1997).
  • Nam JM, Park SJ, Mirkin CA. Bio-barcodes based on oligonucleotide-modified nanoparticles. J. Am. Chem. Soc.124(15), 3820–3821 (2002).
  • Huang YF, Chang HT. Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal. Chem.79(13), 4852–4859 (2007).
  • Wang A, Wu CJ, Chen SH. Gold nanoparticle-assisted protein enrichment and electroelution for biological samples containing low protein concentrations – a prelude of gel electrophoresis. J. Proteome Res.5(6), 1488–1492 (2006).
  • Matsui M, Kiyozumi Y, Yamamoto T, Mizushina Y, Mizukami F, Sakaguchi K. Selective adsorption of biopolymers on zeolites. Chem. Eur. J.7(7), 1555–1560 (2001).
  • Zhang YH, Wang XY, Shan W et al. Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI–TOF MS analysis. Angew. Chem. Int. Edit.44(4), 615–617 (2005).
  • Chen RJ, Zhang YG, Wang DW, Dai HJ. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc.123(16), 3838–3839 (2001).
  • Shim M, Kam NWS, Chen RJ, Li YM, Dai HJ. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett.2(4), 285–288 (2002).
  • Chen WY, Wang LS, Chiu HT, Chen YC, Lee CY. Carbon nanotubes as affinity probes for peptides and proteins in MALDI MS analysis. J. Am. Soc. Mass Spectrom.15(11), 1629–1635 (2004).
  • Ren SF, Guo YL. Carbon nanotubes (2,5-dihydroxybenzoyl hydrazine) derivative as pH adjustable enriching reagent and matrix for MALDI analysis of trace peptides. J. Am. Soc. Mass Spectrom.17(7), 1023–1027 (2006).
  • Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc.127(50), 17604–17605 (2005).
  • Kong XL, Huang LCL, Hsu CM, Chen WH, Han CC, Chang HC. High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal. Chem.77(1), 259–265 (2005).
  • Liu KK, Cheng CL, Chang CC, Chao JI. Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology18(32), 325102 (2007).
  • Wei LM, Shen Q, Lu HJ, Yang PY. Pretreatment of low-abundance peptides on detonation nanodiamond for direct analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Chromatogr. B877(29), 3631–3637 (2009).
  • Jia WT, Chen XH, Lu HJ, Yang PY. CaCO3-poly(methyl methacrylate) nanoparticles for fast enrichment of low-abundance peptides followed by CaCO3-core removal for MALDI–TOF MS analysis. Angew. Chem. Int. Edit.45(20), 3345–3349 (2006).
  • Xiong HM, Guan XY, Jin LH, Shen WW, Lu HJ, Xia YY. Surfactant-free synthesis of SnO2@PMMA and TiO2@PMMA core-shell nanobeads designed for peptide/protein enrichment and MALDI–TOF MS analysis. Angew. Chem. Int. Edit.47(22), 4204–4207 (2008).
  • Shen WW, Xiong HM, Xu Y, Cai SJ, Lu HJ, Yang PY. ZnO-poly(methyl methacrylate) nanobeads for enriching and desalting low-abundant proteins followed by directly MALDI–TOF MS analysis. Anal. Chem.80(17), 6758–6763 (2008).
  • Zuo C, Yu WJ, Zhou XF, Zhao DY, Yang PY. Highly efficient enrichment and subsequent digestion of proteins in the mesoporous molecular sieve silicate SBA-15 for matrix-assisted laser desorption/ionization mass spectrometry with time-of-flight/time-of-flight analyzer peptide mapping. Rapid Commun. Mass Spectrom.20(20), 3139–3144 (2006).
  • Xu YW, Wu ZX, Zhang LJ et al. Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal. Chem.81(1), 503–508 (2009).
  • Tian RJ, Zhang H, Ye ML et al. Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis. Angew. Chem. Int. Edit.46(6), 962–965 (2007).
  • Chou PH, Chen SH, Liao HK et al. Nanoprobe-based affinity mass spectrometry for selected protein profiling in human plasma. Anal. Chem.77(18), 5990–5997 (2005).
  • Chen WY, Chen YC. Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins. Anal. Bioanal. Chem.386(3), 699–704 (2006).
  • Gao M, Zhang P, Hong G et al. Novel monolithic enzymatic microreactor based on single-enzyme nanoparticles for highly efficient proteolysis and its application in multidimensional liquid chromatography. J. Chromatogr. A1216(44), 7472–7477 (2009).
  • Yuan HM, Zhang LH, Hou CY et al. Integrated platform for proteome analysis with combination of protein and peptide separation via online digestion. Anal. Chem.81(21), 8708–8714 (2009).
  • Pereira-Medrano AG, Forster S, Fowler GJS, McArthur SL, Wright PC. Rapid fabrication of glass/PDMS hybrid IMER for high throughput membrane proteomics. Lab Chip10(24), 3397–3406 (2010).
  • Segu ZM, Hammad LA, Mechref Y. Rapid and efficient glycoprotein identification through microwave-assisted enzymatic digestion. Rapid Commun. Mass Spectrom.24(23), 3461–3468 (2010).
  • Lill JR, Ingle ES, Liu PS, Pham V, Sandoval WN. Microwave-assisted proteomics. Mass Spectrom. Rev.26(5), 657–671 (2007).
  • Knobel M, Nunes WC, Socolovsky LM, De Biasi E, Vargas JM, Denardin JC. Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J. Nanosci. Nanotechnol.8(6), 2836–2857 (2008).
  • Bedanta S, Kleemann W. Supermagnetism. J. Phys. D Appl. Phys.42(1), 28 (2009).
  • Ugelstad J, Stenstad P, Kilaas L et al. Monodisperse magnetic polymer particles – new biochemical and biomedical applications. Blood Purif.11(6), 349–369 (1993).
  • Hock B, Dankwardt A, Kramer K, Marx A. Immunochemical techniques: antibody production for pesticide analysis. A review. Anal. Chim. Acta311(3), 393–405 (1995).
  • Talasaz AH, Powell AA, Huber DE et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc. Natl Acad. Sci. USA106(10), 3970–3975 (2009).
  • Lin YS, Tsai PJ, Weng MF, Chen YC. Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI–MS analysis of bacteria. Anal. Chem.77(6), 1753–1760 (2005).
  • Mailander V, Landfester K. Interaction of nanoparticles with cells. Biomacromolecules10(9), 2379–2400 (2009).
  • Goya GF, Grazu V, Ibarra MR. Magnetic nanoparticles for cancer therapy. Curr. Nanosci.4(1), 1–16 (2008).
  • Corchero J, Villaverde A. Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol.27(8), 468–476 (2009).
  • Ochoa ML, Harrington PB. Immunomagnetic isolation of enterohemorrhagic Escherichia coli O157 : H7 from ground beef and identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and database searches. Anal. Chem.77(16), 5258–5267 (2005).
  • Madonna AJ, Basile F, Furlong E, Voorhees KJ. Detection of bacteria from biological mixtures using immunomagnetic separation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom.15(13), 1068–1074 (2001).
  • Gu HW, Ho PL, Tsang KWT, Yu CW, Xu B. Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration. Chem. Commun. (15), 1966–1967 (2003).
  • Ho KC, Tsai PJ, Lin YS, Chen YC. Using biofunctionalized nanoparticles to probe pathogenic bacteria. Anal. Chem.76(24), 7162–7168 (2004).
  • Liu J-C, Chen W-J, Li C-W et al. Identification of Pseudomonas aeruginosa using functional magnetic nanoparticle-based affinity capture combined with MALDI MS analysis. Analyst134(10), 2087–2094 (2009).
  • Chen CT, Chen YC. Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem.77(18), 5912–5919 (2005).
  • Chiu YC, Chen YC. Carboxylate-functionalized iron oxide nanoparticles in surface-assisted laser desorption/ionization mass spectrometry for the analysis of small biomolecules. Anal. Lett.41(2), 260–267 (2008).
  • Liu JC, Tsai PJ, Lee YC, Chen YC. Affinity capture of uropathogenic Escherichia coli using pigeon ovalbumin-bound Fe3O4@Al2O3 magnetic nanoparticles. Anal. Chem.80(14), 5425–5432 (2008).
  • Chen CT, Chen WJ, Liu CZ, Chang LY, Chen YC. Glutathione-bound gold nanoclusters for selective-binding and detection of glutathione S-transferase-fusion proteins from cell lysates. Chem. Commun. (48), 7515–7517 (2009).
  • Teng CH, Ho KC, Lin YS, Chen YC. Gold nanoparticles as selective and concentrating probes for samples in MALDI MS analysis. Anal. Chem.76(15), 4337–4342 (2004).
  • Lin HY, Chen CT, Chen YC. Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized on glass substrates. Anal. Chem.78(19), 6873–6878 (2006).
  • Krenkova J, Foret F. Immobilized microfluidic enzymatic reactors. Electrophoresis25(21–22), 3550–3563 (2004).
  • Svec F. Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports. Electrophoresis27(5–6), 947–961 (2006).
  • Kim J, Grate JW, Wang P. Nanostructures for enzyme stabilization. Chem. Eng. Sci.61(3), 1017–1026 (2006).
  • Huang Y, Shan W, Liu BH et al. Zeolite nanoparticle modified microchip reactor for efficient protein digestion. Lab Chip6(4), 534–539 (2006).
  • Qiao L, Liu Y, Hudson SP, Yang PY, Magner E, Liu BH. A nanoporous reactor for efficient proteolysis. Chem. Eur. J.14(1), 151–157 (2008).
  • Qian K, Wan JJ, Qiao L et al. Macroporous materials as novel catalysts for efficient and controllable proteolysis. Anal. Chem.81(14), 5749–5756 (2009).
  • Wang S, Bao HM, Yang PY, Chen G. Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion. Anal. Chim. Acta612(2), 182–189 (2008).
  • Kluchova K, Zboril R, Tucek J et al. Superparamagnetic maghemite nanoparticles from solid-state synthesis – their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials30(15), 2855–2863 (2009).
  • Li D, Teoh WY, Gooding JJ, Selomulya C, Amal R. Functionalization strategies for protease immobilization on magnetic nanoparticles. Adv. Funct. Mater.20(11), 1767–1777 (2010).
  • Li Y, Xu XQ, Yan B et al. Microchip reactor packed with metal-ion chelated magnetic silica microspheres for highly efficient proteolysis. J. Proteome Res.6(6), 2367–2375 (2007).
  • Li Y, Yan B, Deng CH et al. Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres. Proteomics7(14), 2330–2339 (2007).
  • Li Y, Xu X, Deng C, Yang P, Zhang X. Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis. J. Proteome Res.6(9), 3849–3855 (2007).
  • Liu JY, Lin S, Qi DW, Deng CH, Yang PY, Zhang XM. On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis. J. Chromatogr. A.1176(1–2), 169–177 (2007).
  • Gijs MAM, Lacharme F, Lehmann U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem. Rev.110(3), 1518–1563 (2010).
  • Bose AK, Ing YH, Lavlinskaia N et al. Microwave enhanced Akabori reaction for peptide analysis. J. Am. Soc. Mass Spectrom.13(7), 839–850 (2002).
  • Swatkoski S, Russell SC, Edwards N, Fenselau C. Rapid chemical digestion of small acid-soluble spore proteins for analysis of Bacillus spores. Anal. Chem.78(1), 181–188 (2006).
  • Zhong HY, Zhang Y, Wen ZH, Li L. Protein sequencing by mass analysis of polypeptide ladders after controlled protein hydrolysis. Nat. Biotechnol.22(10), 1291–1296 (2004).
  • Pramanik BN, Mirza UA, Ing YH et al. Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: a new approach to protein digestion in minutes. Protein Sci.11(11), 2676–2687 (2002).
  • Aslan K, Geddes CD. Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays. Anal. Chem.77(24), 8057–8067 (2005).
  • Aslan K, Malyn SN, Geddes CD. Multicolor microwave-triggered metal-enhanced chemiluminescence. J. Am. Chem. Soc.128(41), 13372–13373 (2006).
  • Aslan K, Geddes CD. A review of an ultrafast and sensitive bioassay platform technology: microwave-accelerated metal-enhanced fluorescence. Plasmonics3(2–3), 89–101 (2008).
  • Chen WY, Chen YC. Acceleration of microwave-assisted enzymatic digestion reactions by magnetite beads. Anal. Chem.79(6), 2394–2401 (2007).
  • Chen WY, Chen YC. MALDI MS analysis of oligonucleotides: desalting by functional magnetite beads using microwave-assisted extraction. Anal. Chem.79(21), 8061–8066 (2007).
  • Lin S, Yao GP, Qi DW et al. Fast and efficient proteolysis by microwave-assisted protein digestion using trypsin-immobilized magnetic silica microspheres. Anal. Chem.80(10), 3655–3665 (2008).
  • Lin S, Lin ZX, Yao GP, Deng CH, Yang PY, Zhang XM. Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Rapid Commun. Mass Spectrom.21(23), 3910–3918 (2007).
  • Yao GP, Qi DW, Deng CH, Zhang XM. Functionalized magnetic carbonaceous microspheres for trypsin immobilization and the application to fast proteolysis. J. Chromatogr. A1215(1–2), 82–91 (2008).
  • Deng YH, Deng CH, Qi DW et al. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin. Adv. Mater.21(13), 1377–1382 (2009).
  • Lin PC, Chou PH, Chen SH et al. Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small2(4), 485–489 (2006).
  • Chen HM, Liu SS, Yang HL et al. Selective separation and enrichment of peptides for MS analysis using the microspheres composed of Fe3O4@nSiO2 core and perpendicularly aligned mesoporous SiO2 shell. Proteomics10(5), 930–939 (2010).
  • Chen HM, Deng CH, Zhang XM. Synthesis of Fe3O4@SiO2@PMMA core–shell–shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI–ToF MS analysis. Angew. Chem. Int. Edit.49(3), 607–611 (2010).
  • Liu SS, Chen HM, Lu XH, Deng CH, Zhang XM, Yang PY. Facile synthesis of copper(II)immobilized on magnetic mesoporous silica microspheres for selective enrichment of peptides for mass spectrometry analysis. Angew. Chem. Int. Edit.49(41), 7557–7561 (2010).
  • Chen HM, Qi DW, Deng CH, Yang PY, Zhang XM. Preparation of C60-functionalized magnetic silica microspheres for the enrichment of low-concentration peptides and proteins for MALDI–TOF MS analysis. Proteomics9(2), 380–387 (2009).
  • Cantrell D. T cell antigen receptor signal transduction pathways. Annu. Rev. Immunol.14, 259–274 (1996).
  • Han GH, Ye ML, Zhou HJ et al. Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics8(7), 1346–1361 (2008).
  • McLachlin DT, Chait BT. Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol.5(5), 591–602 (2001).
  • Han GH, Ye ML, Zou HF. Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Analyst133(9), 1128–1138 (2008).
  • Porath J, Carlsson J, Olsson I, Belfrage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature258(5536), 598–599 (1975).
  • Navajas R, Paradela A, Albar JP. Immobilized metal affinity chromatography/reversed-phase enrichment of phosphopeptides and analysis by CID/ETD tandem mass spectrometry. Methods Mol. Biol.681, 337–348 (2010).
  • Pan CS, Ye ML, Liu YG et al. Enrichment of phosphopeptides by Fe3+-immobilized mesoporous nanoparticles of MCM-41 for MALDI and nano-LC–MS/MS analysis. J. Proteome Res.5(11), 3114–3124 (2006).
  • Li X, Gerber SA, Rudner AD et al. Large-scale phosphorylation analysis of α-factor-arrested Saccharomyces cerevisiae. J. Proteome Res.6(3), 1190–1197 (2007).
  • Kim JE, Tannenbaum SR, White FM. Global phosphoproteome of HT-29 human colon adenocarcinoma cells. J. Proteome Res.4(4), 1339–1346 (2005).
  • Posewitz MC, Tempst P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem.71(14), 2883–2892 (1999).
  • Ficarro SB, Parikh JR, Blank NC, Marto JA. Niobium(V) oxide (Nb2O5): application to phosphoproteomics. Anal. Chem.80(12), 4606–4613 (2008).
  • Jensen SS, Larsen MR. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun. Mass Spectrom.21(22), 3635–3645 (2007).
  • Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC–MS/MS in proteomics applications. Mol. Cell. Proteomics6(6), 1103–1109 (2007).
  • Kweon HK, Hakansson K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal. Chem.78(6), 1743–1749 (2006).
  • Wolschin F, Wienkoop S, Weckwerth W. Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics5(17), 4389–4397 (2005).
  • Zhou HJ, Tian RJ, Ye ML et al. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis28(13), 2201–2215 (2007).
  • Xu XQ, Deng CH, Gao MX, Yu WJ, Yang PY, Zhang XM. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv. Mater.18(24), 3289–3293 (2006).
  • Tan F, Zhang Y, Mi W et al. Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. J. Proteome Res.7(3), 1078–1087 (2008).
  • Li Y, Qi DW, Deng CH, Yang PY, Zhang XM. Cerium ion-chelated magnetic silica microspheres for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. J. Proteome Res.7(4), 1767–1777 (2008).
  • Zhao LA, Wu RA, Han GH et al. The highly selective capture of phosphopeptides by zirconium phosphonate-modified magnetic nanoparticles for phosphoproteome analysis. J. Am. Soc. Mass Spectrom.19(8), 1176–1186 (2008).
  • Wei JY, Zhang YJ, Wang JL et al. Highly efficient enrichment of phosphopeptides by magnetic nanoparticles coated with zirconium phosphonate for phosphoproteome analysis. Rapid Commun. Mass Spectrom.22(7), 1069–1080 (2008).
  • Chen CT, Chen WY, Tsai PJ, Chien KY, Yu JS, Chen YC. Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis. J. Proteome Res.6(1), 316–325 (2007).
  • Lo CY, Chen WY, Chen CT, Chen YC. Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. J. Proteome Res.6(2), 887–893 (2007).
  • Li Y, Xu XQ, Qi DW, Deng CH, Yang PY, Zhang XM. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. J. Proteome Res.7(6), 2526–2538 (2008).
  • Li Y, Wu JS, Qi DW et al. Novel approach for the synthesis of Fe3O4@TiO2 core-shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI–TOF MS analysis. Chem. Commun. (5), 564–566 (2008).
  • Li Y, Liu Y, Tang J et al. Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. J. Chromatogr. A1172(1), 57–71 (2007).
  • Li Y, Leng TH, Lin HQ et al. Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. J. Proteome Res.6(11), 4498–4510 (2007).
  • Li Y, Lin HQ, Deng CH, Yang PY, Zhang XM. Highly selective and rapid enrichment of phosphorylated peptides using gallium oxide-coated magnetic microspheres for MALDI–TOF–MS and nano-LC–ESI–MS/MS/MS analysis. Proteomics8(2), 238–249 (2008).
  • Qi DW, Lu J, Deng CH, Zhang XM. Development of core-shell structure Fe3O4@Ta2O5 microspheres for selective enrichment of phosphopeptides for mass spectrometry analysis. J. Chromatogr. A1216(29), 5533–5539 (2009).
  • Qi DW, Lu J, Deng CH, Zhang XM. Magnetically responsive Fe3O4@C@SnO2 core-shell microspheres: synthesis, characterization and application in phosphoproteomics. J. Phys. Chem. C113(36), 15854–15861 (2009).
  • Lu J, Qi DW, Deng CH, Zhang XM, Yang PY. Hydrothermal synthesis of α-Fe2O3@SnO2 core-shell nanotubes for highly selective enrichment of phosphopeptides for mass spectrometry analysis. Nanoscale2(10), 1892–1900 (2010).
  • Zhou HJ, Ye ML, Dong J et al. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J. Proteome Res.7(9), 3957–3967 (2008).
  • Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics4(6), 1633–1649 (2004).
  • Dube DH, Bertozzi CR. Glycans in cancer and inflammation. Potential for therapeutics and diagnostics. Nat. Rev. Drug Discov.4(6), 477–488 (2005).
  • Wuhrer M, Deelder AM, Hokke CH. Protein glycosylation analysis by liquid chromatography-mass spectrometry. J. Chromatogr. B825(2), 124–133 (2005).
  • Zhou W, Yao N, Yao GP, Deng CH, Zhang XM, Yang PY. Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins. Chem. Commun. (43), 5577–5579 (2008).
  • Tang J, Liu YC, Qi DW, Yao GP, Deng CH, Zhang XM. On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI–QIT–TOF MS analysis. Proteomics9(22), 5046–5055 (2009).
  • Zhang LJ, Xu YW, Yao HL et al. Boronic acid functionalized core-satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins. Chem. Eur. J.15(39), 10158–10166 (2009).
  • Qi DW, Zhang HY, Tang J, Deng CH, Zhang XM. Facile synthesis of mercaptophenylboronic acid-functionalized core-shell structure Fe3O4@C@Au magnetic microspheres for selective enrichment of glycopeptides and glycoproteins. J. Phys. Chem. C114(20), 9221–9226 (2010).
  • Piyasena ME, Real LJ, Diamond RA, Xu HH, Gomez FA. Magnetic microsphere-based methods to study the interaction of teicoplanin with peptides and bacteria. Anal. Bioanal. Chem.392(5), 877–886 (2008).
  • Berven FS, Ahmad R, Clouser KR, Carr SA. Optimizing performance of glycopeptide capture for plasma proteomics. J. Proteome Res.9(4), 1706–1715 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.