94
Views
2
CrossRef citations to date
0
Altmetric
Review

Proteomics at the interface of psychology, gut physiology and dysfunction: an underexploited approach that deserves expansion

&
Pages 605-614 | Published online: 09 Jan 2014

References

  • Roberts MA, Mutch DM, German JB. Genomics: food and nutrition. Curr. Opin. Biotechnol.12, 516–522 (2001).
  • Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host–microbial relationships in the intestine. Science291, 881–884 (2001).
  • Kussmann M, Affolter M. Proteomic methods in nutrition. Curr. Opin. Clin. Nutr. Metab. Care9, 575–583 (2006).
  • Kussmann M, Affolter M, Fay LB. Proteomics in nutrition and health. Comb. Chem. High Throughput. Screen.8, 679–696 (2005).
  • Kussmann M, Rezzi S, Daniel H. Profiling techniques in nutrition and health research. Curr. Opin. Biotechnol.19, 83–99 (2008).
  • Kussmann M, Affolter M. Proteomics at the center of nutrigenomics: comprehensive molecular understanding of dietary health effects. Nutrition25(11–12), 1085–1093 (2009).
  • Kussmann M, Krause L, Siffert W. Nutrigenomics: where are we with genetic and epigenetic markers for disposition and susceptibility? Nutr. Rev.68(Suppl. 1), S38–S47 (2010).
  • Mallick P, Kuster B. Proteomics: a pragmatic perspective. Nat. Biotechnol.28, 695–709 (2010).
  • Wilkins MR, Gasteiger, E, Sanchez JC, Appel RD, Hochstrasser DF. Protein identification with sequence tags. Curr. Biol.6, 1543–1544 (1996).
  • Bantscheff M, Eberhard D, Abraham Y et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol.25, 1035–1044 (2007).
  • Lescuyer P, Hochstrasser D, Rabilloud T. How shall we use the proteomics toolbox for biomarker discovery? J. Proteome Res.6(9), 3371–3376 (2007).
  • Kussmann M, Panchaud A, Affolter M. Proteomics in nutrition: status quo and outlook for biomarkers and bioactives. J. Proteome. Res.9, 4876–4887 (2010).
  • Hansson J, Panchaud A, Favre L et al. Time-resolved quantitative proteome analysis of in vivo intestinal development. Mol. Cell Proteomics10, M110 (2011).
  • Wilson ID, Nicholson JK, Castro-Perez J et al. High resolution ‘ultra performance’ liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J. Proteome Res.4, 591–598 (2005).
  • Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham-Cooks R. The Orbitrap: a new mass spectrometer. J. Mass Spectrom.40, 430–443 (2005).
  • Johnson JR, Meng FY, Forbes AJ, Cargile BJ, Kelleher NL. Fourier-transform mass spectrometry for automated fragmentation and identification of 5–20 kDa proteins in mixtures. Electrophoresis23, 3217–3223 (2002).
  • Smith RD. Evolution of ESI-mass spectrometry and Fourier-transform ion cyclotron resonance for proteomics and other biological applications. Int. J. Mass Spectrom.200, 509–544 (2000).
  • Brock A, Horn DM, Peters EC et al. An automated matrix-assisted laser desorption/ionization quadrupole Fourier-transform ion cyclotron resonance mass spectrometer for ‘bottom-up’ proteomics. Anal. Chem.75, 3419–3428 (2003).
  • de Godoy LM, Olsen JV, de Souza GA, Li G, Mortensen P, Mann M. Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol.7, R50 (2006).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17, 994–999 (1999).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics3, 1154–1169 (2004).
  • Panchaud A, Hansson J, Affolter MP et al. ANIBAL, stable isotope-based quantitative proteomics by aniline and benzoic acid labeling of amino and carboxylic groups. Mol. Cell Proteomics7, 800–812 (2008).
  • Kuster B, Schirle M, Mallick P, Aebersold R. Scoring proteomes with proteotypic peptide probes. Nat. Rev. Mol. Cell Biol.6, 577–583 (2005).
  • Mallick P, Schirle M, Chen SS et al. Computational prediction of proteotypic peptides for quantitative proteomics. Nat. Biotechnol.25, 125–131 (2007).
  • Panchaud A, Affolter M, Moreillon P, Kussmann M. Experimental and computational approaches to quantitative proteomics: status quo and outlook. J. Proteomics71, 19–33 (2008).
  • Cans C, Mangano R, Barila D, Neubauer G, Superti-Furga G. Nuclear tyrosine phosphorylation: the beginning of a map. Biochem. Pharmacol.60, 1203–1215 (2000).
  • Kocher T, Superti-Furga G. Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat. Methods4, 807–815 (2007).
  • Oppermann FS, Gnad F, Olsen JV et al. Large-scale proteomics analysis of the human kinome. Mol. Cell Proteomics8, 1751–1764 (2009).
  • Trelle MB, Jensen ON. Functional proteomics in histone research and epigenetics. Expert. Rev. Proteomics4(4), 491–503 (2007).
  • Hansson J, Bosco N, Favre L et al. Influence of gut microbiota on mouse B2 B cell ontogeny and function. Mol. Immunol.48, 1091–1101 (2011).
  • Framson PE, Cho DH, Lee LY, Hershberg RM. Polarized expression and function of the costimulatory molecule CD58 on human intestinal epithelial cells. Gastroenterology116, 1054–1062 (1999).
  • Abreu MT, Fukata M, Arditi M. TLR signaling in the gut in health and disease. J. Immunol.174, 4453–4460 (2005).
  • Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology124, 993–1000 (2003).
  • Yang SK, Eckmann L, Panja A, Kagnoff MF. Differential and regulated expression of C–X–C, C–C, and C-chemokines by human colon epithelial cells. Gastroenterology113, 1214–1223 (1997).
  • Canny G, Colgan SP. Events at the host–microbial interface of the gastrointestinal tract. I. Adaptation to a microbial world: role of epithelial bactericidal/permeability-increasing protein. Am. J. Physiol. Gastrointest. Liver Physiol.288, G593–G597 (2005).
  • Wehkamp J, Fellermann K, Herrlinger KR, Bevins CL, Stange EF. Mechanisms of disease: defensins in gastrointestinal diseases. Nat. Clin. Pract. Gastroenterol. Hepatol.2, 406–415 (2005).
  • Meddings JB. Intestinal permeability in Crohn’s disease. Aliment. Pharmacol. Ther.3, 47–53 (1997).
  • James SP. Prototypic disorders of gastrointestinal mucosal immune function: Celiac disease and Crohn’s disease. J. Allergy Clin. Immunol.115, 25–30 (2005).
  • Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Buschenfelde KH. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol.102, 448–455 (1995).
  • Farrell RJ, LaMont JT. Microbial factors in inflammatory bowel disease. Gastroenterol. Clin. North Am.31, 41–62 (2002).
  • Shanahan F. The host–microbe interface within the gut. Best. Pract. Res. Clin. Gastroenterol.16, 915–931 (2002).
  • Carter MJ, Lobo AJ, Travis SP. Guidelines for the management of inflammatory bowel disease in adults. Gut53(Suppl. 5), V1–V16 (2004).
  • Macfarlane S, Furrie E, Cummings JH, Macfarlane GT. Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin. Infect. Dis.38, 1690–1699 (2004).
  • Ferguson LR, Shelling AN, Browning BL, Huebner C, Petermann I. Genes, diet and inflammatory bowel disease. Mutat. Res.622, 70–83 (2007).
  • Roy N, Barnett M, Knoch B, Dommels Y, McNabb W. Nutrigenomics applied to an animal model of inflammatory bowel diseases: transcriptomic analysis of the effects of eicosapentaenoic acid- and arachidonic acid-enriched diets. Mutat. Res.622, 103–116 (2007).
  • Holtmann MH, Krummenauer F, Claas C et al. Long-term effectiveness of azathioprine in IBD beyond 4 years: a European multicenter study in 1176 patients. Dig. Dis. Sci.51, 1516–1524 (2006).
  • Isaacs KL, Sartor RB. Treatment of inflammatory bowel disease with antibiotics. Gastroenterol. Clin. North Am.33, 335–345 (2004).
  • Sartor RB. Review article: how relevant to human inflammatory bowel disease are current animal models of intestinal inflammation? Aliment. Pharmacol. Ther.11(Suppl. 3), 89–96 (1997).
  • Seksik P, Rigottier-Gois L, Gramet G et al. Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut52, 237–242 (2003).
  • Furrie E, Macfarlane S, Kennedy A et al. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut54, 242–249 (2005).
  • Groux H, O’Garra A, Bigler M et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature389, 737–742 (1997).
  • Singh B, Read S, Asseman C et al. Control of intestinal inflammation by regulatory T cells. Immunol. Rev.182, 190–200 (2001).
  • Strober W, Nakamura K, Kitani A. The SAMP1/Yit mouse: another step closer to modeling human inflammatory bowel disease. J. Clin. Invest.107, 667–670 (2001).
  • Kitani A, Fuss IJ, Nakamura K, Schwartz OM, Usui T, Strober W. Treatment of experimental (trinitrobenzene sulfonic acid) colitis by intranasal administration of transforming growth factor (TGF)-β1 plasmid: TGF-β1-mediated suppression of T helper cell type 1 response occurs by interleukin (IL)-10 induction and IL-12 receptor β2 chain downregulation. J. Exp. Med.192, 41–52 (2000).
  • Kussmann M, Blum S. OMICS-derived targets for inflammatory gut disorders: opportunities for the development of nutrition related biomarkers. Endocr. Metab. Immune Disord. Drug Targets7, 271–287 (2007).
  • Danielsen M, Thymann T, Jensen BB, Jensen ON, Sangild PT, Bendixen E. Proteome profiles of mucosal immunoglobulin uptake in inflamed porcine gut. Proteomics6, 6588–6596 (2006).
  • Danielsen M, Hornshoj H, Siggers RH, Jensen BB, van Kessel AG, Bendixen E. Effects of bacterial colonization on the porcine intestinal proteome. J. Proteome Res.6, 2596–2604 (2007).
  • Jiang P, Sangild PT, Siggers RH, Sit WH, Lee CL, Wan JM. Bacterial colonization affects the intestinal proteome of preterm pigs susceptible to necrotizing enterocolitis. Neonatology99, 280–288 (2011).
  • Thébault S, Deniel N, Galland A et al. Human duodenal proteome modulations by glutamine and antioxidants. Proteomics Clin. Appl.4, 325–336 (2010).
  • Langley JN. Observations on denervated muscle. J. Physiol.50, 335–344 (1916).
  • Wood JD, Alpers DH, Andrews PL. Fundamentals of neurogastroenterology. Gut45(Suppl. 2), II6–II16 (1999).
  • Hansen MB. The enteric nervous system I: organisation and classification. Pharmacol. Toxicol.92, 105–113 (2004).
  • Hansen MB. The enteric nervous system III: a target for pharmacological treatment. Pharmacol. Toxicol.93, 1–13 (2003).
  • Hansen MB. The enteric nervous system II: gastrointestinal functions. Pharmacol. Toxicol.92, 249–257 (2003).
  • Mayer EA, Collins SM. Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology122, 2032–2048 (2002).
  • Barreau F, Ferrier L, Fioramonti J, Bueno L. New insights in the etiology and pathophysiology of irritable bowel syndrome: contribution of neonatal stress models. Pediatr. Res.62, 240–245 (2007).
  • Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Meaney MJ, Plotsky PM. Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog. Brain Res.122, 81–103 (2000).
  • Coutinho SV, Plotsky PM, Sablad M et al. Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am. J. Physiol. Gastrointest. Liver Physiol.282, G307–G316 (2002).
  • Barreau F, Salvador-Cartier C, Houdeau E, Bueno L, Fioramonti J. Long-term alterations of colonic nerve-mast cell interactions induced by neonatal maternal deprivation in rats. Gut57, 582–590 (2008).
  • Hyland NP, Julio-Pieper M, O’Mahony SM et al. A distinct subset of submucosal mast cells undergoes hyperplasia following neonatal maternal separation: a role in visceral hypersensitivity? Gut58, 31029–31030 (2009).
  • Choi YS, Choe LH, Lee KH. Recent cerebrospinal fluid biomarker studies of Alzheimer’s disease. Exp. Rev. Proteomics7(6), 919–929 (2010).
  • Kim SI, Voshol H, van Oostrum J, Hastings TG, Cascio M, Glucksman MJ. Neuroproteomics: expression profiling of the brain’s proteomes in health and disease. Neurochem. Res.29, 1317–1331 (2007).
  • Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, Davidsson P. Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res. Mol. Brain Res.118, 140–146 (2003).
  • Dayon L, Turck N, Garcia-Berrocoso T et al. Brain extracellular fluid protein changes in acute stroke patients. J. Proteome Res.10(3), 1043–1051 (2011).
  • Husi H, Grant SGN. Proteomics of the nervous system. Trends Neurosci.24, 259–266 (2001).
  • Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT. The yeast nuclear pore complex: composition, architecture and transport mechanism. J. Cell Biol.148, 635–651 (2000).
  • Robinson RA, Lange MB, Sultana R et al. Differential expression and redox proteomics analyses of an Alzheimer disease transgenic mouse model: effects of the amyloid-β peptide of amyloid precursor protein (APP). Neuroscience17, 207–222 (2011).
  • Ginsberg SD. Expression profile analysis of brain aging. In: Brain Aging: Models, Methods and Mechanisms. Riddle DR (Ed.). Frontiers in Neuroscience, CRC Press, FL, USA (2007).
  • Marvin-Guy L, Lopes LV, Affolter M et al. Proteomics of the rat gut: analysis of the myenteric plexus-longitudinal muscle preparation. Proteomics5, 2561–2569 (2005).
  • Lopes LV, Marvin-Guy LF, Fuerholz A et al. Maternal deprivation affects the neuromuscular protein profile of the rat colon in response to an acute stressor later in life. J. Proteomics71, 80–88 (2008).
  • Camilleri M, Heading R, Thompson WG. Consensus report: clinical perspectives, mechanisms, diagnosis and management if Irritable Bowel Syndrome. Aliment. Pharmacol. Ther.16, 1407–1430 (2004).
  • Atkinson RJ, Hunter JO. Role of diet and bulking agents in the treatment of IBS. In: Irritable Bowel Syndrome. Camilleri M, Spiller RC, Saunders WB (Eds). Elsevier Sciences Ltd., Edinburgh, Scotland, UK, 141–150 (2002).
  • Barbara G, Stanghellini V, De Giorgio R et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology126, 693–702 (2004).
  • Barbara G, Wang B, Stanghellini V et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology132, 26–37 (2007).
  • Soderholm JD, Perdue MH. Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am. J. Physiol. Gastrointest. Liver Physiol.280, G7–G13 (2001).
  • Nanni P, Levander F, Roda G, Caponi A, James P, Roda A. A label-free nano-liquid chromatography-mass spectrometry approach for quantitative serum peptidomics in Crohn’s disease patients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.877, 3127–3136 (2009).
  • Kang L, Yang ZL, Liu W et al. Serum proteomic variation study in patients with Crohn disease. Zhonghua Wei Chang Wai Ke Za Zhi11, 266–269 (2008).
  • Kang L, Yang ZL, Wang L et al. Expression of CD45 in the serum of patients with Crohn’s disease. Nan Fang Yi Ke Da Xue Xue Bao29, 259–263 (2009).
  • Barcelo-Batllori S, André M, Servis C et al. Proteomic analysis of cytokine-induced proteins in human intestinal epithelial cells: implications for inflammatory bowel diseases. Proteomics2, 551–560 (2002).
  • Hsieh SY, Shih TC, Yeh CY, Lin CJ, Chou YY, Lee YS. Comparative proteomic studies on the pathogenesis of human ulcerative colitis. Proteomics6, 5322–5331 (2006).
  • Lomnytska M, Lukiyanchuk V, Hellman U, Souchelnytskyi S. Transforming growth factor-β1-regulated proteins in human endothelial cells indentified by two-dimensional gel electrophoresis and mass spectrometry. Proteomics4, 995–1006 (2004).
  • Nanni P, Mezzanotte L, Roda G et al. Differential proteomic analysis of HT29 Cl.16E and intestinal epithelial cells by LC ESI/QTOF mass spectrometry. J. Proteomics72, 865–873 (2009).
  • Meuwis MA, FilletM, Lutteri L et al. Proteomics for prediction and characterization of response to infliximab in Crohn’s disease: a pilot study. Clin. Biochem.41, 960–967 (2008).
  • Hatsugai M, Kurokawa MS, Kouro T et al. Protein profiles of peripheral blood mononuclear cells are useful for differential diagnosis of ulcerative colitis and Crohn’s disease. J. Gastroenterol.45, 488–500 (2010).
  • Kaakoush NO, Man SM, Lamb S et al. The secretome of Campylobacter concisus. FEBS J.277, 1606–1617 (2010).
  • Chen CS, Sullivan S, Anderson T et al. Identification of novel serological biomarkers for inflammatory bowel disease using Escherichia coli proteome chip. Mol. Cell Proteomics8, 1765–1776 (2009).
  • Shih TC, Hsieh SY, Hsieh YY et al. Aberrant activation of nuclear factor of activated T cell 2 in lamina propria mononuclear cells in ulcerative colitis. World J. Gastroenterol.14, 1759–1767 (2008).
  • Shkoda A, Werner T, Daniel H, Gunckel M, Rogler G, Haller D. Differential protein expression profile in the intestinal epithelium from patients with inflammatory bowel disease. J. Proteome Res.6, 1114–1125 (2007).
  • Kanmura S, Uto H, Numata M et al. Human neutrophil peptides 1–3 are useful biomarkers in patients with active ulcerative colitis. Inflamm. Bowel Dis.15, 909–917 (2009).
  • Ding Y, Lu B, Chen D, Meng L, Shen Y, Chen S. Proteomic analysis of colonic mucosa in a rat model of irritable bowel syndrome. Proteomics10, 2620–2630 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.