160
Views
22
CrossRef citations to date
0
Altmetric
Review

Proteomics of blood and derived products: what’s next?

, &
Pages 717-737 | Published online: 09 Jan 2014

References

  • Hess JR, Grazzini G. Blood proteomics and transfusion safety. J. Proteomics73(3), 365–367 (2010).
  • Liumbruno G, D’Alessandro A, Grazzini G, Zolla L. Blood-related proteomics. J. Proteomics73(3), 483–507 (2010).
  • Tissot JD. Blood proteomics. J. Proteomics73(3), 466–467 (2010).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422(6928), 198–207 (2003).
  • Walther TC, Mann M. Mass spectrometry-based proteomics in cell biology. J. Cell Biol.190(4), 491–500 (2010).
  • Walsh GM, Rogalski JC, Klockenbusch C, Kast J. Mass spectrometry-based proteomics in biomedical research: emerging technologies and future strategies. Expert Rev. Mol. Med.12, e30 (2010).
  • Lion N, Prudent M, Crettaz D, Tissot J-D. Proteomics and transfusion medicine. Trans. Clin. Biol.18(2), 79–96 (2011).
  • Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol.1(5), 252–262 (2005).
  • Elliott MH, Smith DS, Parker CE, Borchers C. Current trends in quantitative proteomics. J. Mass Spectrom.44(12), 1637–1660 (2009).
  • Boja E, Hiltke T, Rivers R et al. Evolution of clinical proteomics and its role in medicine. J. Proteome Res.10(1), 66–84 (2011).
  • Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol.11(6), 427–439 (2010).
  • D’Alessandro A, Zolla L. Proteomics for quality-control processes in transfusion medicine. Anal. Bioanal. Chem.398(1), 111–124 (2010).
  • Devine DV, Schubert P. Proteomic applications in blood transfusion: working the jigsaw puzzle. Vox. Sang.100(1), 84–91 (2011).
  • Lion N, Crettaz D, Rubin O, Tissot JD. Stored red blood cells: a changing universe waiting for its map(s). J. Proteomics73(3), 374–385 (2010).
  • Lion N, Tissot JD. Application of proteomics to hematology: the revolution is starting. Expert Rev. Proteomics5(3), 375–379 (2008).
  • Liumbruno G, D’Alessandro A, Grazzini G, Zolla L. How has proteomics informed transfusion biology so far? Crit. Rev. Oncol. Hematol.76(3), 153–172 (2010).
  • Schubert P, Devine DV. Proteomics meets blood banking: identification of protein targets for the improvement of platelet quality. J. Proteomics73(3), 436–444 (2010).
  • Low TY, Seow TK, Chung MC. Separation of human erythrocyte membrane associated proteins with one-dimensional and two-dimensional gel electrophoresis followed by identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics2(9), 1229–1239 (2002).
  • Kakhniashvili DG, Bulla LA Jr, Goodman SR. The human erythrocyte proteome: analysis by ion trap mass spectrometry. Mol. Cell. Proteomics3(5), 501–509 (2004).
  • Pasini EM, Kirkegaard M, Mortensen P, Lutz HU, Thomas AW, Mann M. In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood108(3), 791–801 (2006).
  • Ringrose JH, van Solinge WW, Mohammed S et al. Highly efficient depletion strategy for the two most abundant erythrocyte soluble proteins improves proteome coverage dramatically. J. Proteome Res.7(7), 3060–3063 (2008).
  • Roux-Dalvai F, Gonzalez de Peredo A, Simo C et al. Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry. Mol. Cell. Proteomics7(11), 2254–2269 (2008).
  • van Gestel RA, van Solinge WW, van der Toorn HW et al. Quantitative erythrocyte membrane proteome analysis with Blue-native/SDS PAGE. J. Proteomics73(3), 456–465 (2010).
  • Harrison ML, Rathinavelu P, Arese P, Geahlen RL, Low PS. Role of band-3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis. J. Biol. Chem.266(7), 4106–4111 (1991).
  • Low PS, Allen DP, Zioncheck TF et al. Tyrosine phosphorylation of band-3 inhibits peripheral protein-binding. J. Biol. Chem.262(10), 4592–4596 (1987).
  • Low PS, Rathinavelu P, Harrison ML. Regulation of glycolysis via reversible enzyme binding to the membrane-protein, band-3. J. Biol. Chem.268(20), 14627–14631 (1993).
  • Yannoukakos D, Vasseur C, Piau JP, Wajcman H, Bursaux E. Phosphorylation sites in human erythrocyte band-3 protein. Biochim. Biophys. Acta1066(2), 253–266 (1991).
  • Ferru E, Giger K, Pantaleo A et al. Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3. Blood117(22), 5998–6006 (2011).
  • De Franceschi L, Biondani A, Carta F et al. PTP epsilon has a critical role in signaling transduction pathways and phosphoprotein network topology in red cells. Proteomics8(22), 4695–4708 (2008).
  • Siciliano A, Turrini F, Bertoldi M et al. Deoxygenation affects tyrosine phosphoproteome of red cell membrane from patients with sickle cell disease. Blood Cells Mol. Dis.44(4), 233–242 (2010).
  • Bessos H, Seghatchian J. Red cell storage lesion: the potential impact of storage-induced CD47 decline on immunomodulation and the survival of leucofiltered red cells. Transfus. Apher. Sci.32(2), 227–232 (2005).
  • Chin-Yee I, Arya N, d’Almeida MS. The red cell storage lesion and its implication for transfusion. Transfus. Sci.18(3), 447–458 (1997).
  • Gladwin MT, Kim-Shapiro DB. Storage lesion in banked blood due to hemolysis-dependent disruption of nitric oxide homeostasis. Curr. Opin. Hematol.16(6), 515–523 (2009).
  • Glynn SA. The red blood cell storage lesion: a method to the madness. Transfusion50(6), 1164–1169 (2010).
  • Schrier SL, Hardy B, Bensch K, Junga I, Krueger J. Red blood cell membrane storage lesion. Transfusion19(2), 158–165 (1979).
  • Tinmouth A, Chin-Yee I. The clinical consequences of the red cell storage lesion. Transfus. Med. Rev.15(2), 91–107 (2001).
  • Wolfe L. The red cell membrane and the storage lesion. Clin. Haematol.14(1), 259–276 (1985).
  • Rubin O, Crettaz D, Canellini G, Tissot JD, Lion N. Microparticles in stored red blood cells: an approach using flow cytometry and proteomic tools. Vox. Sang.95(4), 288–297 (2008).
  • Rubin O, Crettaz D, Tissot JD, Lion N. Microparticles in stored red blood cells: submicron clotting bombs? Blood. Transfus.8(Suppl. 3), S31–S38 (2010).
  • Tissot JD, Rubin O, Canellini G. Analysis and clinical relevance of microparticles from red blood cells. Curr. Opin. Hematol.17(6), 571–577 (2010).
  • Bosman G, Lasonder E, Groenen-Dopp YAM, Willekens FLA, Werre JM, Novotny VMJ. Comparative proteomics of erythrocyte aging in vivo and in vitro. J. Proteomics73(3), 396–402 (2010).
  • Bosman G, Werre JM, Willekens FLA, Novotny VMJ. Erythrocyte ageing in vivo and in vitro: structural aspects and implications for transfusion. Transfus. Med.18(6), 335–347 (2008).
  • D’Amici GM, Rinalducci S, Zolla L. Proteomic analysis of RBC membrane protein degradation during blood storage. J. Proteome Res.6(8), 3242–3255 (2007).
  • Rubin O, Crettaz D, Tissot JD, Lion N. Pre-analytical and methodological challenges in red blood cell microparticle proteomics. Talanta82(1), 1–8 (2010).
  • Bosman GJ, Lasonder E, Luten M et al. The proteome of red cell membranes and vesicles during storage in blood bank conditions. Transfusion48(5), 827–835 (2008).
  • Rinalducci S, D’Amici GM, Blasi B, Zolla L. Oxidative stress-dependent oligomeric status of erythrocyte peroxiredoxin II (PrxII) during storage under standard blood banking conditions. Biochimie93, 845–853 (2011).
  • Antonelou MH, Kriebardis AG, Stamoulis KE, Economou-Petersen E, Margaritis LH, Papassideri IS. Red blood cell aging markers during storage in citrate-phosphate-dextrose-saline-adenine-glucose-mannitol. Transfusion50(2), 376–389 (2010).
  • Rinalducci S, D’Amici GM, Blasi B, Vaglio S, Grazzini G, Zolla L. Peroxiredoxin-2 as a candidate biomarker to test oxidative stress levels of stored red blood cells under blood bank conditions. Transfusion51(7), 1439–1449 (2011).
  • Finamore F, Pieroni L, Ronci M et al. Proteomics investigation of human platelets by shotgun nUPLC-MSE and 2DE experimental strategies: a comparative study. Blood Transfus.8(Suppl. 3), S140–S148 (2010).
  • Senzel L, Gnatenko DV, Bahou WF. The platelet proteome. Curr. Opin. Hematol.16(5), 329–333 (2009).
  • Simon O, Wortelkamp S, Sickmann A. Characterization of platelet proteins using peptide centric proteomics. Methods Mol. Biol.564, 155–171 (2009).
  • Yin W, Czuchlewski D, Peerschke EI. Development of proteomic signatures of platelet activation using surface-enhanced laser desorption/ionization technology in a clinical setting. Am. J. Clin. Pathol.129(6), 862–869 (2008).
  • Foy M, Maguire PB. Recent advances in the characterisation of the platelet membrane system by proteomics. Curr. Pharm. Des.13(26), 2647–2655 (2007).
  • Greening DW, Glenister KM, Sparrow RL, Simpson RJ. Enrichment of human platelet membranes for proteomic analysis. Methods Mol. Biol.528, 245–258 (2009).
  • Lewandrowski U, Wortelkamp S, Lohrig K et al. Platelet membrane proteomics: a novel repository for functional research. Blood114(1), e10–e19 (2009).
  • Miller JL. Glycoprotein analysis for the diagnostic evaluation of platelet disorders. Semin. Thromb. Hemost.35(2), 224–232 (2009).
  • Maguire PB, Wynne KJ, Harney DF, O’Donoghue NM, Stephens G, Fitzgerald DJ. Identification of the phosphotyrosine proteome from thrombin activated platelets. Proteomics2(6), 642–648 (2002).
  • Qureshi AH, Chaoji V, Maiguel D et al. Proteomic and phospho-proteomic profile of human platelets in basal, resting state: insights into integrin signaling. PLoS One4(10), e7627 (2009).
  • Zahedi RP, Lewandrowski U, Wiesner J et al. Phosphoproteome of resting human platelets. J. Proteome Res.7(2), 526–534 (2008).
  • Maynard DM, Heijnen HF, Horne MK, White JG, Gahl WA. Proteomic analysis of platelet alpha-granules using mass spectrometry. J. Thromb. Haemost.5(9), 1945–1955 (2007).
  • Majek P, Reicheltova Z, Stikarova J, Suttnar J, Sobotkova A, Dyr JE. Proteome changes in platelets activated by arachidonic acid, collagen, and thrombin. Proteome Sci.8, 56 (2010).
  • Tucker KL, Kaiser WJ, Bergeron AL et al. Proteomic analysis of resting and thrombin-stimulated platelets reveals the translocation and functional relevance of HIP-55 in platelets. Proteomics9(18), 4340–4354 (2009).
  • Davi G, Patrono C. Mechanisms of disease: platelet activation and atherothrombosis. N. Engl. J. Med.357(24), 2482–2494 (2007).
  • Siess W. Molecular mechanisms of platelet activation. Physiol. Rev.69(1), 58–178 (1989).
  • Senis YA, Tomlinson MG, Garcia A et al. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein. Mol. Cell. Proteomics6(3), 548–564 (2007).
  • Suzuki-Inoue K, Fuller GLJ, Garcia A et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood107(2), 542–549 (2006).
  • Kaiser WJ, Holbrook LM, Tucker KL, Stanley RG, Gibbins JM. A functional proteomic method for the enrichment of peripheral membrane proteins reveals the collagen binding protein Hsp47 is exposed on the surface of activated human platelets. J. Proteome Res.8(6), 2903–2914 (2009).
  • Marcus K, Immler D, Sternberger J, Meyer HE. Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laser desorption/ioniztion-time of flight-mass spectrometry and detection of tyrosine-phosphorylated proteins. Electrophoresis21(13), 2622–2636 (2000).
  • Marcus K, Moebius J, Meyer HE. Differential analysis of phosphorylated proteins in resting and thrombin-stimulated human platelets. Anal. Bioanal. Chem.376(7), 973–993 (2003).
  • García A, Senis YA, Antrobus R et al. A global proteomics approach identifies novel phosphorylated signaling proteins in GPVI-activated platelets: involvement of G6f, a novel platelet Grb2-binding membrane adapter. Proteomics6(19), 5332–5343 (2006).
  • Seghatchian J, Krailadsiri P. Platelet storage lesion and apoptosis: are they related? Transfus. Apher. Sci.24(1), 103–105 (2001).
  • Shrivastava M. The platelet storage lesion. Transfus. Apher. Sci.41(2), 105–113 (2009).
  • Seghatchian J, Krailadsiri P. The platelet storage lesion. Transf. Med. Rev.11(2), 130–144 (1997).
  • Thon JN, Schubert P, Duguay M et al. Comprehensive proteomic analysis of protein changes during platelet storage requires complementary proteomic approaches. Transfusion48(3), 425–435 (2008).
  • Kulkarni S, Kannan M, Atreya CD. Omic approaches to quality biomarkers for stored platelets: are we there yet? Transfus. Med. Rev.24(3), 211–217 (2010).
  • Thiele T, Steil L, Gebhard S et al. Profiling of alterations in platelet proteins during storage of platelet concentrates. Transfusion47(7), 1221–1233 (2007).
  • Thon JN, Schubert P, Devine DV. Platelet storage lesion: a new understanding from a proteomic perspective. Transfus. Med. Rev.22(4), 268–279 (2008).
  • Glenister KM, Payne KA, Sparrow RL. Proteomic analysis of supernatant from pooled buffy-coat platelet concentrates throughout 7-day storage. Transfusion48(1), 99–107 (2008).
  • Egidi MG, Rinalducci S, Marrocco C, Vaglio S, Zolla L. Proteomic analysis of plasma derived from platelet buffy coats during storage at room temperature. An application of ProteoMiner(™) technology. Platelets22(4), 252–269 (2011).
  • Lemaitre D, Vericel E, Polette A, Lagarde M. Effects of fatty acids on human platelet glutathione peroxidase: possible role of oxidative stress. Biochem. Pharmacol.53(4), 479–486 (1997).
  • Alexandru N, Constantin A, Popov D. Carbonylation of platelet proteins occurs as consequence of oxidative stress and thrombin activation, and is stimulated by ageing and Type 2 diabetes. Clin. Chem. Lab. Med.46(4), 528–536 (2008).
  • Hayashi T, Tanaka S, Hori Y, Hirayama F, Sato EF, Inoue M. Role of mitochondria in the maintenance of platelet function during in vitro storage. Transfus. Med.21(3), 166–174 (2011).
  • Allet N, Barrillat N, Baussant T et al. In vitro and in silico processes to identify differentially expressed proteins. Proteomics4(8), 2333–2351 (2004).
  • Goldknopf IL. Blood-based proteomics for personalized medicine: examples from neurodegenerative disease. Expert Rev. Proteomics5(1), 1–8 (2008).
  • Huijbers A, Velstra B, Dekker TJA et al. Proteomic serum biomarkers and their potential application in cancer screening programs. Int. J. Mol. Sci.11(11), 4175–4193 (2010).
  • Schneider P, Hampel H, Buerger K. Biological marker candidates of Alzheimer’s disease in blood, plasma, and serum. CNS Neurosci. Ther.15(4), 358–374 (2009).
  • Simpson KL, Whetton AD, Dive C. Quantitative mass spectrometry-based techniques for clinical use: biomarker identification and quantification. J. Chromatogr. B.877(13), 1240–1249 (2009).
  • Omenn GS. The HUPO human plasma proteome project. Proteomics Clin. Appl.1(8), 769–779 (2007).
  • Omenn GS. Data management and data integration in the HUPO plasma proteome project. Methods Mol. Biol.696, 247–257 (2011).
  • Cottingham K. HUPO Plasma Proteome Project: challenges and future directions. J. Proteome Res5(6), 1298 (2006).
  • Crettaz D, Sensebe L, Vu DH et al. Proteomics of methylene blue photo-treated plasma before and after removal of the dye by an absorbent filter. Proteomics4(3), 881–891 (2004).
  • Brigulla M, Thiele T, Scharf C et al. Proteomics as a tool for assessment of therapeutics in transfusion medicine: evaluation of prothrombin complex concentrates. Transfusion46(3), 377–385 (2006).
  • Ohlmann P, Cazenave J-P, Isola H, Gachet C. Photochemical pathogen inactivation treatment of human plasma (amotosalen plus UVA) has no major impact on the protein expression pattern assessed by a 2-DIGE proteomic assay. Presented at: 24th Congress of the French Society of Blood Transfusion. Strasbourg, France, 23–25 June 2009.
  • Steil L, Thiele T, Hammer E et al. Proteomic characterization of freeze-dried human plasma: providing treatment of bleeding disorders without the need for a cold chain. Transfusion48(11), 2356–2363 (2008).
  • Hsieh SY, Chen RK, Pan YH, Lee HL. Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics6(10), 3189–3198 (2006).
  • Ettinger A, Miklauz MM, Hendrix BK, Bihm DJ, Maldonado-Codina G, Goodrich RP. Protein stability of previously frozen plasma, riboflavin and UV light-treated, refrozen and stored for up to 2 years at -30 degrees C. Transfus. Apher. Sci.44(1), 25–31 (2011).
  • Thiele T, Steil L, Volker U, Greinacher A. Transfusion medicine and proteomics. Alliance or coexistence? Blood Transfus.8(Suppl. 3), S16–S25 (2010).
  • Delobel J, Rubin O, Prudent M, Crettaz D, Tissot JD, Lion N. Biomarker analysis of stored blood products: emphasis on pre-analytical issues. Int. J. Mol. Sci.11(11), 4601–4617 (2010).
  • Salomao M, Zhang XH, Yang Y et al. Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. Proc. Natl Acad. Sci. USA105(23), 8026–8031 (2008).
  • van den Akker E, Satchwell TJ, Williamson RC, Toye AM. Band 3 multiprotein complexes in the red cell membrane; of mice and men. Blood Cells Mol. Dis.45(1), 1–8 (2010).
  • Burton NM, Bruce LJ. Modelling the structure of the red cell membrane. Biochem. Cell Biol.89(2), 200–215 (2011).
  • Bruce LJ, Beckmann R, Ribeiro ML et al. A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood101(10), 4180–4188 (2003).
  • Goodman SR, Kurdia A, Ammann L, Kakhniashvili D, Daescu O. The human red blood cell proteome and interactome. Exp. Biol. Med.232(11), 1391–1408 (2007).
  • Chaurasia G, Iqbal Y, Hanig C, Herzel H, Wanker EE, Futschik ME. UniHI: an entry gate to the human protein interactome. Nucleic Acids Res.35, D590–D594 (2007).
  • Balasubramanian R, LaFramboise T, Scholtens D, Gentleman R. A graph-theoretic approach to testing associations between disparate sources of functional genomics data. Bioinformatics20(18), 3353–3362 (2004).
  • D’Alessandro A, Righetti PG, Zolla L. The red blood cell proteome and interactome: an update. J. Proteome Res.9(1), 144–163 (2010).
  • Bianchi P, Fermo E, Vercellati C et al. Congenital dyserythropoietic anemia Type II (CDAII) is caused by mutations in the SEC23B Gene. Hum. Mutat.30(9), 1292–1298 (2009).
  • Kakhniashvili DG, Griko NB, Bulla LA, Goodman SR. The proteomics of sickle cell disease: profiling of erythrocyte membrane proteins by 2D-DIGE and tandem mass spectrometry. Exp. Biol. Med.230(11), 787–792 (2005).
  • Ghatpande SS, Choudhary PK, Quinn CT, Goodman SR. Pharmaco-proteomic study of hydroxyurea-induced modifications in the sickle red blood cell membrane proteome. Exp. Biol. Med.233(12), 1510–1517 (2008).
  • Fibach E, Burke LP, Schechter AN, Noguchi CT, Rodgers GP. Hydroxyurea increases fetal hemoglobin in cultured erythroid-cells derived from normal individuals and patients with sickle-cell-anemia or beta-thalassemia. Blood81(6), 1630–1635 (1993).
  • Ghatpande SS, Choudhary PK, Quinn CT, Goodman SR. In vivo pharmaco-proteomic analysis of hydroxyurea induced changes in the sickle red blood cell membrane proteome. J. Proteomics73(3), 619–626 (2010).
  • Bhattacharya D, Saha S, Basu S et al. Differential regulation of redox proteins and chaperones in HbE beta-thalassemia erythrocyte proteome. Proteomics Clin. Appl.4(5), 480–488 (2010).
  • Chakrabarti A, Bhattacharya D, Basu A, Basu S, Saha S, Halder S. Differential expression of red cell proteins in hemoglobinopathy. Proteomics Clin. Appl.5(1–2), 98–108 (2011).
  • Florens L, Washburn MP, Raine JD et al. A proteomic view of the Plasmodium falciparum life cycle. Nature419(6906), 520–526 (2002).
  • Lasonder E, Ishihama Y, Andersen JS et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature419(6906), 537–542 (2002).
  • Sims PFG, Hyde JE. Proteomics of the human malaria parasite Plasmodium falciparum. Expert Rev. Proteomics3(1), 87–95 (2006).
  • Wu Y, Craig A. Comparative proteomic analysis of metabolically labelled proteins from Plasmodium falciparum isolates with different adhesion properties. Malar. J.5, 67 (2006).
  • Fried M, Hixson KK, Anderson L, Ogata Y, Mutabingwa TK, Duffy PE. The distinct proteome of placental malaria parasites. Mol. Biochem. Parasitol.155(1), 57–65 (2007).
  • Seghatchian J, de Sousa G. Pathogen-reduction systems for blood components: the current position and future trends. Transfus. Apher. Sci.35(3), 189–196 (2006).
  • Benjamin RJ, McCullough J, Mintz PD et al. Therapeutic efficacy and safety of red blood cells treated with a chemical process (S-303) for pathogen inactivation: a Phase III clinical trial in cardiac surgery patients. Transfusion45(11), 1739–1749 (2005).
  • Henschler R, Seifried E, Mufti N. Development of the S-303 pathogen inactivation technology for red blood cell concentrates. Transfus. Med. Hemother.38(1), 33–42 (2011).
  • Anniss AM, Glenister KM, Killian JJ, Sparrow RL. Proteomic analysis of supernatants of stored red blood cell products. Transfusion45(9), 1426–1433 (2005).
  • Koch CG, Li L, Sessler DI et al. Duration of red-cell storage and complications after cardiac surgery. N. Engl. J. Med.358(12), 1229–1239 (2008).
  • Rüesch M, Jutzi M. Annual haemovigilance report 2009. SwissMedic, Bern, Switzerland (2010).
  • McCullough J, Vesole D, Benjamin RJ et al. Pathogen inactivated platelets (pit) using helinx technology (INTERCEPT plt) are hemostatically effective in thrombocytopenic patients (tcp pts): the SPRINT trial. Blood98(11 PART I), 450A (2001).
  • Osselaer JC, Cazenave JP, Lambermont M et al. An active haemovigilance programme characterizing the safety profile of 7437 platelet transfusions prepared with amotosalen photochemical treatment. Vox Sang.94(4), 315–323 (2008).
  • Osselaer JC, Messe N, Hervig T et al. A prospective observational cohort safety study of 5106 platelet transfusions with components prepared with photochemical pathogen inactivation treatment. Transfusion48(6), 1061–1071 (2008).
  • AuBuchon JP, Herschel L, Roger J et al. Efficacy of apheresis platelets treated with riboflavin and ultraviolet light for pathogen reduction. Transfusion45(8), 1335–1341 (2005).
  • Goodrich RP, Edrich RA, Li J, Seghatchian J. The Mirasol PRT system for pathogen reduction of platelets and plasma: an overview of current status and future trends. Transfus. Apher. Sci.35(1), 5–17 (2006).
  • Perez-Pujol S, Tonda R, Lozano M et al. Effects of a new pathogen-reduction technology (Mirasol PRT) on functional aspects of platelet concentrates. Transfusion45(6), 911–919 (2005).
  • Mohr H, Gravemann U, Bayer A, Müller TH. Sterilization of platelet concentrates at production scale by irradiation with short-wave ultraviolet light. Transfusion49(9), 1956–1963 (2009).
  • Mohr H, Steil L, Gravemann U et al. A novel approach to pathogen reduction in platelet concentrates using short-wave ultraviolet light. Transfusion49(12), 2612–2624 (2009).
  • Terpstra FG, Van’t Wout AB, Schuitemaker H et al. Potential and limitation of UVC irradiation for the inactivation of pathogens in platelet concentrates. Transfusion48(2), 304–313 (2008).
  • Springer DL, Miller JH, Spinelli SL et al. Platelet proteome changes associated with diabetes and during platelet storage for transfusion. J. Proteome Res.8(5), 2261–2272 (2009).
  • Wurtz V, Hechler B, Ohlmann P, Isola H, Schaeffer-Reiss C, Cazenave JP. Identification of platelet factor 4 and β-thromboglobulin by profiling and liquid chromatography tandem mass spectrometry of supernatant peptides in stored apheresis and buffy-coat platelet concentrates. Transfusion47(6), 1099–1101 (2007).
  • Kluter H, Bubel S, Kirchner H, Wilhelm D. Febrile and allergic transfusion reactions after the transfusion of white cell-poor platelet preparations. Transfusion39(11–12), 1179–1184 (1999).
  • Dittrich M, Birschmann I, Mietner S, Sickmann A, Walter U, Dandekar T. Platelet protein interactions – map, signaling components, and phosphorylation groundstate. Arterioscler. Thromb. Vasc. Biol.28(7), 1326–1331 (2008).
  • Zhang CC, Rogalski JC, Evans DM, Klockenbusch C, Beavis RC, Kast J. In silico protein interaction analysis using the global proteome machine database. J. Proteome Res.10(2), 656–668 (2011).
  • Hellstern P, Solheim BG. The use of solvent/detergent treatment in pathogen reduction of plasma. Transfus. Med. Hemother.38(1), 65–70 (2011).
  • Rock G. A comparison of methods of pathogen inactivation of FFP. Vox Sang.100(2), 169–178 (2011).
  • Singh Y, Sawyer LS, Pinkoski LS et al. Photochemical treatment of plasma with amotosalen and long-wavelength ultraviolet light inactivates pathogens while retaining coagulation function. Transfusion46(7), 1168–1177 (2006).
  • Seghatchian J, Struff WG, Reichenberg S. Main properties of the THERAFLEX MB-plasma system for pathogen reduction. Transfus. Med. Hemother.38(1), 55–64 (2011).
  • Seltsam A, Muller TH. UVC irradiation for pathogen reduction of platelet concentrates and plasma. Transfus. Med. Hemother.38(1), 43–54 (2011).
  • Dewachter P, Castro S, Nicaise-Roland P et al. Anaphylactic reaction after methylene blue-treated plasma transfusion. Br. J. Anaesth.106(5), 687–689 (2011).
  • Nubret K, Delhoume M, Orsel I, Laudy JS, Sellami M, Nathan N. Anaphylactic shock to fresh-frozen plasma inactivated with methylene blue. Transfusion51(1), 125–128 (2011).
  • Gaso-Sokac D, Josic D. The role of proteomics in plasma fractionation and quality control of plasma-derived therapeutic proteins. Blood Transf.8, S86–S91 (2010).
  • Yang XL, Clifton JG, Huang FL, Kovac S, Hixson DC, Josic D. Proteomic analysis for process development and control of therapeutic protein separation from human plasma. Electrophoresis30(7), 1185–1193 (2009).
  • Clifton JG, Huang FL, Kovac S, Yang XL, Hixson DC, Josic D. Proteomic characterization of plasma-derived clotting factor VIII-von Willebrand factor concentrates. Electrophoresis30(20), 3636–3646 (2009).
  • Clifton JG, Huang FL, Gaso-Sokac D, Brilliant K, Hixson D, Josic D. Use of proteomics for validation of the isolation process of clotting factor IX from human plasma. J. Proteomics73(3), 678–688 (2010).
  • Basilico F, Nardini I, Mori F et al. Characterization of factor VIII pharmaceutical preparations by means of MudPIT proteomic approach. J. Pharm. Biomed. Anal.53(1), 50–57 (2010).
  • Custer B, Agapova M, Martinez RH. The cost–effectiveness of pathogen reduction technology as assessed using a multiple risk reduction model. Transfusion50(11), 2461–2473 (2010).
  • Hirth RA, Chernew ME, Miller E, Fendrick AM, Weissert WG. Willingness to pay for a quality-adjusted life year: in search of a standard. Med. Decis. Mak.20(3), 332–342 (2000).
  • Davidson T, Ekermo B, Gaines H, Lesko B, Akerlind B. The cost–effectiveness of introducing nucleic acid testing to test for hepatitis B, hepatitis C, and human immunodeficiency virus among blood donors in Sweden. Transfusion51(2), 421–429 (2011).
  • AuBuchon JP. Update on the status of pathogen inactivation methods. ISBT Science Series6(1), 181–188 (2011).
  • Janssen MP, van der Poel CL, Buskens E, Bonneux L, Bonsel GJ, van Hout BA. Costs and benefits of bacterial culturing and pathogen reduction in The Netherlands. Transfusion46(6), 956–965 (2006).
  • Feuchtbaum L, Cunningham G. Economic evaluation of tandem mass spectrometry screening in California. Pediatrics117(5), S280–S286 (2006).
  • Borman SA. New Year, new instruments. Chemical and Engineering News89(14), 37–40 (2011).
  • Martens L, Vizcaino JA, Banks R. Quality control in proteomics. Proteomics11(6), 1015–1016 (2011).
  • Burkhart JM, Vaudel M, Zahedi RP, Martens L, Sickmann A. iTRAQ protein quantification: a quality-controlled workflow. Proteomics11(6), 1125–1134 (2011).
  • Köcher T, Pichler P, Swart R, Mechtler K. Quality control in LC-MS/MS. Proteomics11(6), 1026–1030 (2011).
  • Campbell J, Rezai T, Prakash A et al. Evaluation of absolute peptide quantitation strategies using slected reaction monitoring. Proteomics11(6), 1148–1152 (2011).
  • Barelli S, Crettaz D, Thadikkaran L, Rubin O, Tissot JD. Plasma/serum proteomics: pre-analytical issues. Expert Rev. Proteomics4(3), 363–370 (2007).
  • Dugo P, Cacciola F, Kumm T, Dugo G, Mondello L. Comprehensive multidimensional liquid chromatography: theory and applications. J. Chromatogr. A1184(1–2), 353–368 (2008).
  • Tang J, Gao M, Deng C, Zhang X. Recent development of multi-dimensional chromatography strategies in proteome research. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.866(1–2), 123–132 (2008).
  • Wei J, Sun J, Yu W et al. Global proteome discovery using an online three-dimensional LC-MS/MS. J. Proteome Res.4(3), 801–808 (2005).
  • Thompson A, Schafer J, Kuhn K et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem.75(8), 1895–1904 (2003).
  • Timms JF, Cramer R. Difference gel electrophoresis. Proteomics8(23–24), 4886–4897 (2008).
  • Minden JS, Dowd SR, Meyer HE, Stuhler K. Difference gel electrophoresis. Electrophoresis30(Suppl. 1), S156–S161 (2009).
  • Kitteringham NR, Jenkins RE, Lane CS, Elliott VL, Park BK. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.877(13), 1229–1239 (2009).
  • Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol.4, 222 (2008).
  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA100(12), 6940–6945 (2003).
  • Kirkpatrick DS, Gerber SA, Gygi SP. The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods35(3), 265–273 (2005).
  • Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics1(5), 376–386 (2002).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17(10), 994–999 (1999).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics3(12), 1154–1169 (2004).
  • Anderson NL, Anderson NG. The human plasma proteome – history, character, and diagnostic prospects. Mol. Cell. Proteomics1(11), 845–867 (2002).
  • Ly L, Wasinger VC. Protein and peptide fractionation, enrichment and depletion: tools for the complex proteome. Proteomics11(4), 513–534 (2011).
  • Fitzgerald A, Walsh BJ. New method for prefractionation of plasma for proteomic analysis. Electrophoresis31(21), 3580–3585 (2010).
  • Boschetti E, Righetti PG. The ProteoMiner in the proteomic arena: a non-depleting tool for discovering low-abundance species. J. Proteomics71(3), 255–264 (2008).
  • Righetti PG, Boschetti E, Lomas L, Citterio A. Protein Equalizer™ technology: the quest for a ‘democratic proteome’. Proteomics6(14), 3980–3992 (2006).
  • Righetti PG, Boschetti E. Blood proteomics and the dynamic range: some light at the end of the tunnel? J. Proteomics73(3), 627–628 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.