81
Views
14
CrossRef citations to date
0
Altmetric
Review

Dissecting phosphorylation networks: lessons learned from yeast

, &
Pages 775-786 | Published online: 09 Jan 2014

References

  • Cohen P. Protein kinases – the major drug targets of the twenty-first century? Nat. Rev. Drug. Discov.1(4), 309–315 (2002).
  • Hunter T. Treatment for chronic myelogenous leukemia: the long road to imatinib. J. Clin. Invest.117(8), 2036–2043 (2007).
  • Gridelli C, De Marinis F, Di Maio M, Cortinovis D, Cappuzzo F, Mok T. Gefitinib as first-line treatment for patients with advanced non-small-cell lung cancer with activating epidermal growth factor receptor mutation: implications for clinical practice and open issues. Lung Cancer72(1), 3–8 (2011).
  • Ptacek J, Devgan G, Michaud G et al. Global analysis of protein phosphorylation in yeast. Nature438(7068), 679–684 (2005).
  • Tegge WJ, Frank R. Analysis of protein kinase substrate specificity by the use of peptide libraries on cellulose paper (SPOT-method). Methods Mol. Biol.87, 99–106 (1998).
  • Wu JJ, Phan H, Lam KS. Comparison of the intrinsic kinase activity and substrate specificity of c-Abl and Bcr–Abl. Bioorg. Med. Chem. Lett.8(17), 2279–2284 (1998).
  • Rodriguez M, Li SS, Harper JW, Songyang Z. An oriented peptide array library (OPAL) strategy to study protein–protein interactions. J. Biol. Chem.279(10), 8802–8807 (2004).
  • Rychlewski L, Kschischo M, Dong L, Schutkowski M, Reimer U. Target specificity analysis of the Abl kinase using peptide microarray data. J. Mol. Biol.336(2), 307–311 (2004).
  • Songyang Z, Blechner S, Hoagland N, Hoekstra MF, Piwnica-Worms H, Cantley LC. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol.4(11), 973–982 (1994).
  • Songyang Z, Lu KP, Kwon YT et al. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol. Cell. Biol.16(11), 6486–6493 (1996).
  • Nishikawa K, Toker A, Johannes FJ, Songyang Z, Cantley LC. Determination of the specific substrate sequence motifs of protein kinase C isozymes. J. Biol. Chem.272(2), 952–960 (1997).
  • Obata T, Yaffe MB, Leparc GG et al. Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J. Biol. Chem.275(46), 36108–36115 (2000).
  • Fujii K, Zhu G, Liu Y et al. Kinase peptide specificity: improved determination and relevance to protein phosphorylation. Proc. Natl Acad. Sci. USA101(38), 13744–13749 (2004).
  • Hutti JE, Jarrell ET, Chang JD et al. A rapid method for determining protein kinase phosphorylation specificity. Nat. Methods1(1), 27–29 (2004).
  • Mok J, Kim PM, Lam HY et al. Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci. Signal.3(109), ra12 (2010).
  • Budovskaya YV, Stephan JS, Deminoff SJ, Herman PK. An evolutionary proteomics approach identifies substrates of the cAMP-dependent protein kinase. Proc. Natl Acad. Sci. USA102(39), 13933–13938 (2005).
  • Ubersax JA, Woodbury EL, Quang PN et al. Targets of the cyclin-dependent kinase Cdk1. Nature425(6960), 859–864 (2003).
  • Loog M, Morgan DO. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature434(7029), 104–108 (2005).
  • Dephoure N, Howson RW, Blethrow JD, Shokat KM, O’Shea EK. Combining chemical genetics and proteomics to identify protein kinase substrates. Proc. Natl Acad. Sci. USA102(50), 17940–17945 (2005).
  • Wooten MW. In-gel kinase assay as a method to identify kinase substrates. Sci. STKE2002(153), pl15 (2002).
  • Li X, Guan B, Srivastava MK, Padmanabhan A, Hampton BS, Bieberich CJ. The reverse in-gel kinase assay to profile physiological kinase substrates. Nat. Methods4(11), 957–962 (2007).
  • Lo WS, Duggan L, Emre NC et al. Snf1 – a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science293(5532), 1142–1146 (2001).
  • Zhang C, Kenski DM, Paulson JL et al. A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases. Nat. Methods2(6), 435–441 (2005).
  • Giaever G, Chu AM, Ni L et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature418(6896), 387–391 (2002).
  • Sopko R, Huang D, Preston N et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol. Cell21(3), 319–330 (2006).
  • Thuret JY, Valay JG, Faye G, Mann C. Civ1 (CAK in vivo), a novel Cdk-activating kinase. Cell86(4), 565–576 (1996).
  • Yao S, Prelich G. Activation of the Bur1-Bur2 cyclin-dependent kinase complex by Cak1. Mol. Cell. Biol.22(19), 6750–6758 (2002).
  • Espinoza FH, Farrell A, Nourse JL, Chamberlin HM, Gileadi O, Morgan DO. Cak1 is required for Kin28 phosphorylation and activation in vivo. Mol. Cell. Biol.18(11), 6365–6373 (1998).
  • Sopko R, Papp B, Oliver SG, Andrews BJ. Phenotypic activation to discover biological pathways and kinase substrates. Cell Cycle5(13), 1397–1402 (2006).
  • Fiedler D, Braberg H, Mehta M et al. Functional organization of the S. cerevisiae phosphorylation network. Cell136(5), 952–963 (2009).
  • Ficarro SB, McCleland ML, Stukenberg PT et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.20(3), 301–305 (2002).
  • Li X, Gerber SA, Rudner AD et al. Large-scale phosphorylation analysis of α-factor-arrested Saccharomyces cerevisiae. J. Proteome Res.6(3), 1190–1197 (2007).
  • Chi A, Huttenhower C, Geer LY et al. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl Acad. Sci. USA104(7), 2193–2198 (2007).
  • Gruhler A, Olsen JV, Mohammed S et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics4(3), 310–327 (2005).
  • Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol. Cell. Proteomics7(7), 1389–1396 (2008).
  • Smolka MB, Albuquerque CP, Chen SH, Zhou H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl Acad. Sci. USA104(25), 10364–10369 (2007).
  • Chen SH, Albuquerque CP, Liang J, Suhandynata RT, Zhou H. A proteome-wide analysis of kinase–substrate network in the DNA damage response. J. Biol. Chem.285(17), 12803–12812 (2010).
  • Bodenmiller B, Wanka S, Kraft C et al. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci Signal.3(153), rs4 (2010).
  • Zhu X, Gerstein M, Snyder M. Getting connected: analysis and principles of biological networks. Genes Dev.21(9), 1010–1024 (2007).
  • Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature393(6684), 440–442 (1998).
  • Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat. Rev. Genetics5(2), 101–113 (2004).
  • Barabasi AL, Albert R. Emergence of scaling in random networks. Science286(5439), 509–512 (1999).
  • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL. The large-scale organization of metabolic networks. Nature407(6804), 651–654 (2000).
  • Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature411(6833), 41–42 (2001).
  • Guelzim N, Bottani S, Bourgine P, Kepes F. Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet.31(1), 60–63 (2002).
  • Tong AH, Lesage G, Bader GD et al. Global mapping of the yeast genetic interaction network. Science303(5659), 808–813 (2004).
  • Alon U. Network motifs: theory and experimental approaches. Nat. Rev. Genet.8(6), 450–461 (2007).
  • Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet.31(1), 64–68 (2002).
  • Breitkreutz A, Choi H, Sharom JR et al. A global protein kinase and phosphatase interaction network in yeast. Science328(5981), 1043–1046 (2010).
  • Fasolo J, Sboner A, Sun MG et al. Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes. Genes Dev.25(7), 767–778 (2011).
  • Barik D, Baumann WT, Paul MR, Novak B, Tyson JJ. A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol. Syst. Biol.6, 405 (2010).
  • Tak YS, Tanaka Y, Endo S, Kamimura Y, Araki H. A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2-Dpb11. EMBO J.25(9), 1987–1996 (2006).
  • Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature445(7125), 328–332 (2007).
  • Yu H, Luscombe NM, Lu HX et al. Annotation transfer between genomes: protein–protein interologs and protein–DNA regulogs. Genome Res.14(6), 1107–1118 (2004).
  • Gnad F, Ren S, Cox J et al. PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol.8(11), R250 (2007).
  • Landry CR, Levy ED, Michnick SW. Weak functional constraints on phosphoproteomes. Trends Genet.25(5), 193–197 (2009).
  • Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP, Morgan DO. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science325(5948), 1682–1686 (2009).
  • Beltrao P, Trinidad JC, Fiedler D et al. Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol.7(6), e1000134 (2009).
  • Shou C, Bhardwaj N, Lam HY et al. Measuring the evolutionary rewiring of biological networks. PLoS Comput. Biol.7(1), e1001050 (2011).
  • Slepchenko BM, Schaff JC, Macara I, Loew LM. Quantitative cell biology with the Virtual Cell. Trends Cell Biol.13(11), 570–576 (2003).
  • Baker ME, Wiley MJ. Multiscale control of flooding and riparian-forest composition in Lower Michigan, USA. Ecology90(1), 145–159 (2009).
  • Nooy Wd, Mrvar A, Batagelj V. Exploratory Social Network Analysis with Pajek. Cambridge University Press, Cambridge, UK (2005).
  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science298(5594), 824–827 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.