280
Views
37
CrossRef citations to date
0
Altmetric
Review

Intact proteome fractionation strategies compatible with mass spectrometry

, , &
Pages 787-800 | Published online: 09 Jan 2014

References

  • Demirev PA, Fenselau C. Mass spectrometry for rapid characterization of microorganisms. Ann. Rev. Anal. Chem.1, 71–93 (2008).
  • Wynne C, Fenselau C, Demirev PA, Edwards N. Top-down identification of protein biomarkers in bacteria with unsequenced genomes. Anal. Chem.81(23), 9633–9642 (2009).
  • Michalski A, Cox J, Mann M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J. Proteome Res.10(4), 1785–1793 (2011).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422(6928), 198–207 (2003).
  • Washburn M, Wolters D, Yates J. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19(3), 242–247 (2001).
  • Fournier ML, Gilmore JM, Martin-Brown SA, Washburn MP. Multidimensional separations-based shotgun proteomics. Chem. Rev.107(8), 3654–3686 (2007).
  • Tran JC, Wall MJ, Doucette AA. Evaluation of a solution isoelectric focusing protocol as an alternative to ion exchange chromatography for charge-based proteome prefractionation. J. Chromatogr. B877(8–9), 807–813 (2009).
  • Gygi S, Rist B, Gerber S, Turecek F, Gelb M, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17(10), 994–999 (1999).
  • Craig R, Cortens J, Beavis R. The use of proteotypic peptide libraries for protein identification. Rapid Commun. Mass Spectrom.19(13), 1844–1850 (2005).
  • Mallick P, Schirle M, Chen SS et al. eComputational prediction of proteotypic peptides for quantitative proteomics RID A-5619–2008. Nat. Biotechnol.25(1), 125–131 (2007).
  • Shen YF, Zhao R, Belov ME et al. Packed capillary reversed-phase liquid chromatography with high-performance electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for proteomics. Anal. Chem.73(8), 1766–1775 (2001).
  • Vellaichamy A, Tran JC, Catherman AD et al. Size-sorting combined with improved nanocapillary liquid chromatography-mass spectrometry for identification of intact proteins up to 80 kDa. Anal. Chem.82(4), 1234–1244 (2010).
  • Schmidt A, Kellermann J, Lottspeich F. A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics5(1), 4–15 (2005).
  • Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics1(5), 376–386 (2002).
  • Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M. Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat. Methods7(5), 383–385 (2010).
  • Meyer B, Papasotiriou DG, Karas M. 100% protein sequence coverage: a modern form of surrealism in proteomics. Amino Acids41(2), 291–310 (2011).
  • Righetti PG, Boschetti E, Lomas L, Citterio A. Protein Equalizer (TM) Technology: The quest for a ‘democratic proteome’. Proteomics6(14), 3980–3992 (2006)
  • Xie S, Moya C, Bilgin B, Jayaraman A, Walton SP. Emerging affinity-based techniques in proteomics. Expert Rev. Proteomics6(5), 573–583 (2009).
  • Brunner E, Ahrens CH, Mohanty S et al. A high-quality catalog of the Drosophila melanogaster proteome. Nat. Biotechnol.25(5), 576–583 (2007).
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature403(6765), 41–45 (2000).
  • Kelleher R, Zubarev R, Bush K et al. Localization of labile posttranslational modifications by electron capture dissociation: the case of γ-carboxyglutamic acid. Anal. Chem.71(19), 4250–4253 (1999).
  • Mirgorodskaya E, Roepstorff P, Zubarev R. Localization of O-glycosylation sites in peptides by electron capture dissociation in a fourier transform mass spectrometer. Anal. Chem.71(20), 4431–4436 (1999).
  • Cooper H, Hakansson K, Marshall A. The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev.24(2), 201–222 (2005).
  • Han X, Jin M, Breuker K, McLafferty FW. Extending top-down mass spectrometry to proteins with masses greater than 200 kilodaltons. Science314(5796), 109–112 (2006).
  • Parks BA, Jiang L, Thomas PM et al. Top-down proteomics on a chromatographic time scale using linear ion trap Fourier transform hybrid mass spectrometers. Anal. Chem.79(21), 7984–7991 (2007).
  • Roth MJ, Parks BA, Ferguson JT, Boyne MT II, Kelleher NL. ‘Proteotyping’: population proteomics of human leukocytes using top down mass spectrometry. Anal. Chem.80(8), 2857–2866 (2008).
  • Fang X, Zhang WW. Affinity separation and enrichment methods in proteomic analysis. J. Proteomics71, 284–303 (2008).
  • Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal. Chem.68(5), 850–858 (1996).
  • Zuo X, Speicher DW. A method for global analysis of complex proteomes using sample prefractionation by solution isoelectrofocusing prior to two-dimensional electrophoresis. Anal. Biochem.284(2), 266–278 (2000).
  • Gygi SP, Aebersold R. Mass spectrometry and proteomics. Curr. Opin. Chem. Biol.4(5), 489–494 (2000).
  • Laemmli UK. Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature227(5259), 680–685 (1970).
  • Schirle M, Heurtier MA, Kuster B. Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry. Mol. Cell. Proteomics2(12), 1297–1305 (2003).
  • Wall DB, Kachman MT, Gong SY et al. Isoelectric focusing nonporous RP HPLC: a two-dimensional liquid-phase separation method for mapping of cellular proteins with identification using MALDI-TOF mass spectrometry. Anal. Chem.72(6), 1099–1111 (2000).
  • Whitelegge J, Gundersen C, Faull K. Electrospray-ionization mass spectrometry of intact intrinsic membrane proteins. Prot. Sci.7(6), 1423–1430 (1998).
  • Chong BE, Yan F, Lubman DM, Miller FR. Chromatofocusing nonporous reversed-phase high-performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry of proteins from human breast cancer whole cell lysates: a novel two-dimensional liquid chromatography/mass spectrometry method. Rapid Commun. Mass Spectrom.15(4), 291–296 (2001).
  • Lecchi P, Abramson FP. Analysis of biopolymers by size-exclusion chromatography mass spectrometry. J. Chromatogr. A828(1–2), 509–513 (1998).
  • Lecchi P, Gupte AR, Perez RE, Stockert LV, Abramson FP. Size-exclusion chromatography in multidimensional separation schemes for proteome analysis. J. Biochem. Biophys. Methods56(1–3), 141–152 (2003).
  • Cossu G, Righetti PG. Resolution of γ-gamma and α-gamma fetal hemoglobin tetramers in immobilized pH gradients. J. Chromatogr. A398, 211–216 (1987).
  • Jensen PK, Pasa-Tolic L, Peden KK et al. Mass spectrometic detection for capillary isoelectric focusing separations of complex protein mixtures. Electrophoresis21(7), 1372–1380 (2000).
  • Righetti PG, Castagna A, Antonioli P, Boschetti E. Prefractionation techniques in proteome analysis: the mining tools of the third millennium. Electrophoresis26(2), 297–319 (2005).
  • Zilberstein G, Korol L, Bukshpan S, Baskin E. Parallel isoelectric focusing chip. Proteomics4, 2533–2540 (2004).
  • Ros A, Faupel M, Mees H et al. Protein purification by off-gel electrophoresis. Proteomics2(2), 151–156 (2002).
  • Michel PE, Reymond F, Arnaud IL, Josserand J, Girault HH, Rossier JS. Protein fractionation in a multicompartment device using Off-Gel™ isoelectric focusing. Electrophoresis24(1–2), 3–11 (2003).
  • de Godoy LMF, Olsen JV, Cox J et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature455(7217), 1251–1260 (2008).
  • Zuo X, Speicher DW. Comprehensive analysis of complex proteomes using microscale solution isoelectrofocusing prior to narrow pH range two-dimensional electrophoresis. Proteomics2(1), 58–68 (2002).
  • Hannig K. Continuous free-flow electrophoresis as an analytical and preparative method in biology. J. Chromatogr.159(1), 183–191 (1978).
  • Ouvry-Patat SA, Torres MP, Quek H et al. Free-flow electrophoresis for top-down proteomics by Fourier transform ion cyclotron resonance mass spectrometry. Proteomics8(14), 2798–2808 (2008).
  • Tran JC, Doucette AA. Rapid and effective focusing in a carrier ampholyte solution lsoelectric focusing system: a proteome prefractionation tool. J. Proteome Res.7(4), 1761–1766 (2008).
  • Righetti PG, Wenisch E, Faupel M. Preparative protein-purification in a multi-compartment electrolyzer with Immobiline membranes. J. Chromatogr. A475, 293–309 (1989).
  • Herbert B, Righetti PG. A turning point in proteome analysis: sample prefractionation via multicompartment electrolyzers with isoelectric membranes. Electrophoresis21(17), 3639–3648 (2000).
  • Nesatyy VJ, Ross NW. Recovery of intact proteins from silver stained gels. Analyst127(9), 1180–1187 (2002).
  • Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics2(1), 3–10 (2002).
  • Lewis U, Clark M. Preparative methods for disk electrophoresis with special reference to isolation of pituitary hormones. Anal. Biochem.6(4), 303–315 (1963).
  • Jovin T, Naughton M, Chrambach A. Apparatus for preparative temperature-regulated polyacrylamide gel electrophoresis. Anal. Biochem.9(3), 351–369 (1964).
  • Ornstein L. Disc electrophoresis – I: Background and theory. Ann. NY Acad. Sci.121(A2), 321–351 (1964).
  • Davis B. Disc electrophoresis – 2: Method and application to human serum proteins. Ann. NY Acad. Sci.121(A2), 404–427 (1964).
  • Masuoka J, Glee PM, Hazen KC. Preparative isoelectric focusing and preparative electrophoresis of hydrophobic Candida albicans cell wall proteins with in-line transfer to polyvinylidene difluoride membranes for sequencing. Electrophoresis19(5), 675–678 (1998).
  • Meng F, Cargile B, Patrie S, Johnson J, McLoughlin S, Kelleher N. Processing complex mixtures of intact proteins for direct analysis by mass spectrometry. Anal. Chem.74(13), 2923–2929 (2002).
  • Andersen P, Heron I. Simultaneous electroelution of whole SDS-polyacrylamide gels for the direct cellular analysis of complex protein mixtures. J. Immunol. Methods161(1), 29–39 (1993).
  • Tran JC, Doucette AA. Gel-eluted liquid fraction entrapment electrophoresis: an electrophoretic method for broad molecular weight range proteome separation. Anal. Chem.80(5), 1568–1573 (2008).
  • Tran JC, Doucette AA. Multiplexed size separation of intact proteins in solution phase for mass spectrometry. Anal. Chem.81(15), 6201–6209 (2009).
  • Botelho D, Wall MJ, Vieira DB, Fitzsimmons S, Liu F, Doucette A. Top-down and bottom-up proteomics of SDS-containing solutions following mass-based separation. J. Proteome Res.9(6), 2863–2870 (2010).
  • Lee JE, Kellie JF, Tran JC et al. A robust two-dimensional separation for top-down tandem mass spectrometry of the low-mass proteome. J. Am. Soc. Mass Spectrom.20(12), 2183–2191 (2009).
  • Giddings JC. Two-dimensional separations – concept and promise. Anal. Chem.56(12), 1258A–1260A (1984).
  • Wang H, Clouthier SG, Galchev V et al. Intact-protein-based high-resolution three-dimensional quantitative analysis system for proteome profiling of biological fluids. Mol. Cell. Proteomics4(5), 618–625 (2005).
  • Opiteck GJ, Lewis KC, Jorgenson JW, Anderegg RJ. Comprehensive on-line LC/LC/MS of proteins. Anal. Chem.69(8), 1518–1524 (1997).
  • Assiddiq BF, Snijders AP, Chong PK, Wright PC, Dickman MJ. Identification and characterization of Sulfolobus solfataricus P2 proteome using multidimensional liquid phase protein separations. J. Proteome Res.7(6), 2253–2261 (2008).
  • Kreunin P, Urquidi V, Lubman DM, Goodison S. Identification of metastasis-associated proteins in a human tumor metastasis model using the mass-mapping technique. Proteomics4(9), 2754–2765 (2004).
  • Kreunin P, Zhao J, Rosser C, Urquidi V, Lubman DM, Goodison S. Bladder cancer associated glycoprotein signatures revealed by urinary proteomic profiling. J. Proteome Res.6(7), 2631–2639 (2007).
  • Moritz RL, Ji H, Schutz F et al. A proteome strategy for fractionating proteins and peptides using continuous free-flow electrophoresis coupled off-line to reversed-phase high-performance liquid chromatography. Anal. Chem.76(16), 4811–4824 (2004).
  • Sneekes E, Han J, Elliot M et al. Accurate molecular weight analysis of histones using FFE and RP-HPLC on monolithic capillary columns. J. Sep. Sci.32(15–16), 2691–2698 (2009).
  • Speers AE, Wu CC. Proteomics of integral membrane proteins-theory and application. Chem. Rev.107(8), 3687–3714 (2007).
  • Zhang N, Chen R, Young N et al. Comparison of SDS- and methanol-assisted protein solubilization and digestion methods for Escherichia coli membrane proteome analysis by 2-D LC-MS/MS. Proteomics7(4), 484–493 (2007).
  • Breaux GA, Green-Church KB, France A, Limbach PA. Surfactant-aided, matrix assisted laser desorption/ionization mass spectrometry of hydrophobic and hydrophilic peptides. Anal. Chem.72(6), 1169–1174 (2000).
  • Tummala R, Limbach PA. Effect of sodium dodecyl sulfate micelles on peptide mass fingerprinting by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom.18(18), 2031–2035 (2004).
  • Rundlett KL, Armstrong DW. Mechanism of signal suppression by an ionic surfactants in capillary electrophoresis electrospray ionization mass spectrometry. Anal. Chem.68(19), 3493–3497 (1996).
  • Beavis RC, Chait BT. Rapid, sensitive analysis of protein mixtures by mass-spectrometry. Proc. Natl. Acad. Sci. USA87(17), 6873–6877 (1990).
  • Ikonomou MG, Blades AT, Kebarle P. Investigations of the electrospray interface for liquid-chromatography mass-spectrometry. Anal. Chem.62(9), 957–967 (1990).
  • Kawasaki H, Suzuki K. Separation of peptides dissolved in a sodium dodecyl-sulfate solution by reversed-phase liquid-chromatography – removal of sodium dodecyl-sulfate from peptides using an ion-exchange precolumn. Anal. Biochem.186(2), 264–268 (1990).
  • Pitt R, Impiombato AF. The binding of sodium dodecyl sulphate to various proteins. Biochem. J.109(5), 825–830 (1968).
  • Zaman Z, Verwilghen RL. Quantitation of proteins solubilized in sodium dodecyl sulfate mercaptoethanol tris electrophoresis buffer. Anal. Biochem.100(1), 64–69 (1979).
  • Carraro U, Rizzi C, Sandri M. Effective recovery by KCl precipitation of highly diluted muscle proteins solubilized with sodium dodecyl-sulfate. Electrophoresis12(12), 1005–1010 (1991).
  • Wessel D, Flugge UI. A method for the quantitative recovery of protein in dilute-solution in the presence of detergents and lipids. Anal. Biochem.138(1), 141–143 (1984).
  • Puchades M, Westman A, Blennow K, Davidsson P. Removal of sodium dodecyl sulfate from protein samples prior to matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom.13(5), 344–349 (1999).
  • Amons R, Schrier PI. Removal of sodium dodecyl-sulfate from proteins and peptides by gel-filtration. Anal. Biochem.116(2), 439–443 (1981).
  • Vissers JP, Hulst WP, Chervet JP, Snijders HM, Cramers CA. Automated on-line ionic detergent removal from minute protein/peptide samples prior to liquid chromatography electrospray mass spectrometry. J. Chromatogr. B686(2), 119–128 (1996).
  • Kapp OH, Vinogradov SN. Removal of sodium dodecyl-sulfate from proteins. Anal. Biochem.91(1), 230–235 (1978).
  • Li F, Dong MQ, Miller LJ, Naylor S. Efficient removal of sodium dodecyl sulfate (SDS) enhances analysis of proteins by SDS-polyacrylamide gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom.13(5), 464–466 (1999).
  • Dong MQ, Baggetto LG, Falson P, LeMaire M, Penin F. Complete removal and exchange of sodium dodecyl sulfate bound to soluble and membrane proteins and restoration of their activities, using ceramic hydroxyapatite chromatography. Anal. Biochem.247(2), 333–341 (1997).
  • Fox JL, Stevens SE, Taylor CP, Poulsen LL. SDS removal from protein by polystyrene beads. Anal. Biochem.87(1), 253–256 (1978).
  • Jeno P, Scherer PE, Manningkrieg U, Horst M. Desalting electroeluted proteins with hydrophilic interaction chromatography. Anal. Biochem.215(2), 292–298 (1993).
  • Phillips HM. Method for rapid removal of sodium dodecyl-sulfate from polyacrylamide gels. Anal. Biochem.117(2), 398–401 (1981).
  • Zhou J, Li J, Li J, Chen P, Wang X, Liang S. Dried polyacrylamide gel absorption: a method for efficient elimination of the interferences from SDS-solubilized protein samples in mass spectrometry-based proteome analysis. Electrophoresis31(23–24), 3816–3822 (2010).
  • Lu XN, Zhu HN. Tube-gel digestion – a novel proteomic approach for high throughput analysis of membrane proteins. Mol. Cell. Proteomics4(12), 1948–1958 (2005).
  • Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat. Methods6(5), 359–362 (2009).
  • Zhou J, Zhou T, Cao R et al. Evaluation of the application of sodium deoxycholate to proteomic analysis of rat hippocampal plasma membrane. J. Proteome Res.5(10), 2547–2553 (2006).
  • Masuda T, Saito N, Tomita M, Ishihama Y. Unbiased quantitation of Escherichia coli membrane proteome using phase transfer surfactants. Mol. Cell Proteomics8(12), 2770–2777 (2009).
  • Ishihama Y, Katayama H, Asakawa N. Surfactants usable for electrospray ionization mass spectrometry. Anal. Biochem.287(1), 45–54 (2000).
  • Suder P, Bierczynska A, Konig S, Silberring J. Acid-labile surfactant assists in-solution digestion of proteins resistant to enzymatic attack. Rapid Commun. Mass Spectrom.18(7), 822–824 (2004).
  • Chen EI, Cociorva D, Norris JL, Yates JR 3rd. Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J. Proteome Res.6(7), 2529–2538 (2007).
  • Kadiyala CSR, Tomechko SE, Miyagi M. Perfluorooctanoic acid for shotgun proteomics. PLoS One5(12), e15332 (2010).
  • Lin Y, Zhou J, Bi D, Chen P, Wang X, Liang S. Sodium-deoxycholate-assisted tryptic digestion and identification of proteolytically resistant proteins. Anal. Biochem.377(2), 259–266 (2008).
  • Zhang N, Li L. Effects of common surfactants on protein digestion and matrix-assisted laser desorption/ionization mass spectrometric analysis of the digested peptides using two-layer sample preparation. Rapid Commun. Mass Spectrom.18(8), 889–896 (2004).
  • Wall MJ, Crowell AM, Simms GH, Liu F, Doucette AA. Implications of partial tryptic digestion in organic-aqueous solvent systems for bottom-up proteome analysis. Anal. Chim. Acta703(2), 194–203 (2011).
  • Tabert AM, Griep-Raming J, Guymon AJ, Cooks RG. High-throughput miniature cylindrical ion trap array mass spectrometer. Anal. Chem.75(21), 5656–5664 (2003).
  • Tabert AM, Goodwin MP, Duncan JS, Fico CD, Cooks RG. Multiplexed rectilinear ion trap mass spectrometer for high-throughput analysis. Anal. Chem.78(14), 4830–4838 (2006).
  • Lee JE, Kellie JF, Tran JC et al. A robust two-dimensional separation for top-down tandem mass spectrometry of the low-mass proteome. J. Am. Soc. Mass Spectrom.20(12), 2183–2191 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.