388
Views
5
CrossRef citations to date
0
Altmetric
Review

Ubiquitin-like protein modifiers and their potential for antiviral and anti-HCV therapy

, , , , &
Pages 275-287 | Published online: 09 Jan 2014

References

  • Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature 458(7237), 422–429 (2009).
  • Peng J, Schwartz D, Elias JE et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21(8), 921–926 (2003).
  • Chastagner P, Israël A, Brou C. Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains. EMBO Rep. 7(11), 1147–1153 (2006).
  • Xu G, Paige JS, Jaffrey SR. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat. Biotechnol. 28(8), 868–873 (2010).
  • Randow F, Lehner PJ. Viral avoidance and exploitation of the ubiquitin system. Nat. Cell Biol. 11(5), 527–534 (2009).
  • Delboy MG, Roller DG, Nicola AV. Cellular proteasome activity facilitates herpes simplex virus entry at a postpenetration step. J. Virol. 82(7), 3381–3390 (2008).
  • Narasimhan J, Wang M, Fu Z, Klein JM, Haas AL, Kim JJ. Crystal structure of the interferon-induced ubiquitin-like protein ISG15. J. Biol. Chem. 280(29), 27356–27365 (2005).
  • Zhao C, Beaudenon SL, Kelley ML et al. The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc. Natl Acad. Sci. USA 101(20), 7578–7582 (2004).
  • Okumura F, Zou W, Zhang DE. ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP. Genes Dev. 21(3), 255–260 (2007).
  • Wong JJ, Pung YF, Sze NS, Chin KC. HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc. Natl Acad. Sci. USA 103(28), 10735–10740 (2006).
  • Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ, Zhang DE. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J. Biol. Chem. 277(12), 9976–9981 (2002).
  • Shi HX, Yang K, Liu X et al. Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol. Cell. Biol. 30(10), 2424–2436 (2010).
  • Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC, Zhang DE. High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. J. Biol. Chem. 278(19), 16608–16613 (2003).
  • Zhang D, Zhang DE. Interferon-stimulated gene 15 and the protein ISGylation system. J. Interferon Cytokine Res. 31(1), 119–130 (2011).
  • Dao CT, Zhang DE. ISG15: a ubiquitin-like enigma. Front. Biosci. 10, 2701–2722 (2005).
  • Rosas-Acosta G, Russell WK, Deyrieux A, Russell DH, Wilson VG. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell Proteomics 4(1), 56–72 (2005).
  • Bettermann K, Benesch M, Weis S, Haybaeck J. SUMOylation in carcinogenesis. Cancer Lett. 316(2), 113–125 (2012).
  • Wimmer P, Schreiner S, Dobner T. Human pathogens and the host cell SUMOylation system. J. Virol. 86(2), 642–654 (2012).
  • Kerscher O. SUMO junction – what’s your function? New insights through SUMO-interacting motifs. EMBO Rep. 8(6), 550–555 (2007).
  • Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl Acad. Sci. USA 101(40), 14373–14378 (2004).
  • Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88(1), 97–107 (1997).
  • Rosas-Acosta G, Russell WK, Deyrieux A, Russell DH, Wilson VG. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell Proteomics 4(1), 56–72 (2005).
  • Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol. 11(12), 861–871 (2010).
  • Ribet D, Cossart P. Pathogen-mediated posttranslational modifications: a re-emerging field. Cell 143(5), 694–702 (2010).
  • Isaacson MK, Ploegh HL. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe 5(6), 559–570 (2009).
  • Rabut G, Peter M. Function and regulation of protein neddylation. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep. 9(10), 969–976 (2008).
  • Deshaies RJ, Emberley ED, Saha A. Control of cullin-ring ubiquitin ligase activity by Nedd8. Subcell. Biochem. 54, 41–56 (2010).
  • Soucy TA, Smith PG, Milhollen MA et al. An inhibitor of Nedd8-activating enzyme as a new approach to treat cancer. Nature 458(7239), 732–736 (2009).
  • Stanley DJ, Bartholomeeusen K, Crosby DC et al. Inhibition of a Nedd8 cascade restores restriction of HIV by APOBEC3G. PLoS Pathog. 8(12), e1003085 (2012).
  • Schlieker C, Korbel GA, Kattenhorn LM, Ploegh HL. A deubiquitinating activity is conserved in the large tegument protein of the herpesviridae. J. Virol. 79(24), 15582–15585 (2005).
  • Pelzer C, Groettrup M. FAT10: activated by UBA6 and functioning in protein degradation. Subcell. Biochem. 54, 238–246 (2010).
  • Chiu YH, Sun Q, Chen ZJ. E1-L2 activates both ubiquitin and FAT10. Mol. Cell 27(6), 1014–1023 (2007).
  • Gong P, Canaan A, Wang B et al. The ubiquitin-like protein FAT10 mediates NF-kappaB activation. J. Am. Soc. Nephrol. 21(2), 316–326 (2010).
  • Raasi S, Schmidtke G, de Giuli R, Groettrup M. A ubiquitin-like protein which is synergistically inducible by interferon-gamma and tumor necrosis factor-alpha. Eur. J. Immunol. 29(12), 4030–4036 (1999).
  • Jeram SM, Srikumar T, Pedrioli PG, Raught B. Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites. Proteomics 9(4), 922–934 (2009).
  • Welchman RL, Gordon C, Mayer RJ. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599–609 (2005).
  • Nakamura M, Yamaguchi S. The ubiquitin-like protein MNSFbeta regulates ERK–MAPK cascade. J. Biol. Chem. 281, 16861–16869 (2006).
  • Kondoh T, Nakamura M, Nabika T, Yoshimura Y, Tanigawa Y. Ubiquitin-like polypeptide inhibits the proliferative response of T cells in vivo. Immunobiology 200(1), 140–149 (1999).
  • Komatsu M, Chiba T, Tatsumi K et al. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 23(9), 1977–1986 (2004).
  • Sasakawa H, Sakata E, Yamaguchi Y et al. Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1. Biochem. Biophys. Res. Commun. 343(1), 21–26 (2006).
  • Tatsumi K, Sou YS, Tada N et al. A novel type of E3 ligase for the Ufm1 conjugation system. J. Biol. Chem. 285(8), 5417–5427 (2010).
  • Tatsumi K, Yamamoto-Mukai H, Shimizu R et al. The Ufm1-activating enzyme Uba5 is indispensable for erythroid differentiation in mice. Nat. Commun. 2, 181 (2011).
  • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 469(7330), 323–335 (2011).
  • Geng J, Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep. 9(9), 859–864 (2008).
  • Hwang S, Maloney NS, Bruinsma MW et al. Nondegradative role of Atg5-Atg12/ Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe 11(4), 397–409 (2012).
  • Xu J, Zhang J, Wang L et al. Solution structure of Urm1 and its implications for the origin of protein modifiers. Proc. Natl Acad. Sci. USA 103(31), 11625–11630 (2006).
  • Leidel S, Pedrioli PG, Bucher T et al. Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458(7235), 228–232 (2009).
  • Van der Veen AG, Schorpp K, Schlieker C et al. Role of the ubiquitin-like proteinUrm1 as a noncanonical lysine-directed protein modifier. Proc. Natl Acad. Sci. USA 108, 1763–1770 (2011).
  • Alter MJ. Epidemiology of hepatitis C virus infection. World J. Gastroenterol. 13(17), 2436–2441 (2007).
  • Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244(4902), 359–362 (1989).
  • Gerlach JT, Diepolder HM, Zachoval R et al. Acute hepatitis C: high rate of both spontaneous and treatment-induced viral clearance. Gastroenterology 125(1), 80–88 (2003).
  • Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis. 5(9), 558–567 (2005).
  • Thimme R, Lohmann V, Weber F. A target on the move: innate and adaptive immune escape strategies of hepatitis C virus. Antiviral Res. 69(3), 129–141 (2006).
  • Pileri P, Uematsu Y, Campagnoli S et al. Binding of hepatitis C virus to CD81. Science 282(5390), 938–941 (1998).
  • Scarselli E, Ansuini H, Cerino R et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 21(19), 5017–5025 (2002).
  • Evans MJ, von Hahn T, Tscherne DM et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446(7137), 801–805 (2007).
  • Ploss A, Evans MJ, Gaysinskaya VA et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457(7231), 882–886 (2009).
  • Pöhlmann S, Zhang J, Baribaud F et al. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J. Virol. 77(7), 4070–4080 (2003).
  • Fried MW, Shiffman ML, Reddy KR et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med. 347(13), 975–982 (2002).
  • Feld JJ, Hoofnagle JH. Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436(7053), 967–972 (2005).
  • Randall G, Panis M, Cooper JD et al. Cellular cofactors affecting hepatitis C virus infection and replication. Proc. Natl Acad. Sci. USA 104(31), 12884–12889 (2007).
  • Poordad F, McCone J Jr, Bacon BR et al.; SPRINT-2 Investigators. Boceprevir for untreated chronic HCV genotype 1 infection. N. Engl. J. Med. 364(13), 1195–1206 (2011).
  • Zeuzem S, Andreone P, Pol S et al.; REALIZE Study Team. Telaprevir for retreatment of HCV infection. N. Engl. J. Med. 364(25), 2417–2428 (2011).
  • Margeridon S, Le Pogam S, Liu TF et al. No detection of variants bearing NS5B S282T mericitabine (MCB) resistance mutation in DAA treatment-naive HCV genotype 1-infected patients using ultra-deep pyrosequencing (UDPS). Presented at: 62nd Annual Meeting of the American Association for the Study of Liver Diseases, San Francisco, CA, USA, 6–9 November 2011.
  • Asselah T, Marcellin P. Direct acting antivirals for the treatment of chronic hepatitis C: one pill a day for tomorrow. Liver Int. 32(Suppl. 1), 88–102 (2012).
  • Kiser JJ, Flexner C. Direct-acting antiviral agents for hepatitis C virus infection. Annu. Rev. Pharmacol. Toxicol. 53, 427–449 (2013).
  • Hopkins S, Gallay P. Cyclophilin inhibitors: an emerging class of therapeutics for the treatment of chronic hepatitis C infection. Viruses 4(11), 2558–2577 (2012).
  • Kumura G, Lu I, Pitha-Rowe I, Pitha PM. Innate antiviral response targets HIV-1 release by the inducion of ubiquitin-like protein ISG15. Proc. Natl Acad. Sci. USA 103, 1440–1445 (2006).
  • Ma XZ, Bartczak A, Zhang J et al. Proteasome inhibition in vivo promotes survival in a lethal murine model of severe acute respiratory syndrome. J. Virol. 84(23), 12419–12428 (2010).
  • Luo H, Zhang J, Cheung C, Suarez A, McManus BM, Yang D. Proteasome inhibition reduces coxsackievirus B3 replication in murine cardiomyocytes. Am. J. Pathol. 163(2), 381–385 (2003).
  • Ulane CM, Horvath CM. Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 304(2), 160–166 (2002).
  • Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996).
  • Rosas-Acosta G, Wilson VG. Viruses and SUMOylation. In SUMOylation: Molecular Biology and Biochemistry. Wilson VG (Ed.). Horizon Bioscience, Wymondham, UK, 331–377 (2004).
  • Parkinson J, Everett RD. Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J. Virol. 74(21), 10006–10017 (2000).
  • Gurer C, Berthoux L, Luban J. Covalent modification of human immunodeficiency virus type 1 p6 by SUMO-1. J. Virol. 79(2), 910–917 (2005).
  • Zamborlini A, Coiffic A, Beauclair G et al. Impairment of human immunodeficiency virus type-1 integrase SUMOylation correlates with an early replication defect. J. Biol. Chem. 286(23), 21013–21022 (2011).
  • Yousef AF, Fonseca GJ, Pelka P et al. Identification of a molecular recognition featurein the E1A oncoprotein that binds theSUMOconjugase UBC9 and likely interferes with polySUMOylation. Oncogene 29, 4693–4704 (2010).
  • Frisch SM, Mymryk JS. Adenovirus-5 E1A: paradox and paradigm. Nat. Rev. Mol. Cell Biol. 3(6), 441–452 (2002).
  • Endter C, Kzhyshkowska J, Stauber R, Dobner T. SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc. Natl Acad. Sci. USA 98(20), 11312–11317 (2001).
  • Pennella MA, Liu Y, Woo JL, Kim CA, Berk AJ. Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies. J. Virol. 84(23), 12210–12225 (2010).
  • Cuchet-Lourenço D, Boutell C, Lukashchuk V et al. SUMO pathway dependent recruitment of cellular repressors to herpes simplex virus type 1 genomes. PLoS Pathog. 7(7), e1002123 (2011).
  • Maul GG, Everett RD. The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0. J. Gen. Virol. 75(Pt 6), 1223–1233 (1994).
  • Rangasamy D, Wilson VG. Bovine papillomavirus E1 protein is SUMOylated by the host cell Ubc9 protein. J. Biol. Chem. 275, 30487–30495 (2000).
  • Yasugi T, Vidal M, Sakai H, Howley PM, Benson JD. Two classes of human papillomavirus type 16 E1 mutants suggest pleiotropic conformational constraints affecting E1 multimerization, E2 interaction, and interaction with cellular proteins. J. Virol. 71(8), 5942–5951 (1997).
  • Kaukinen P, Vaheri A, Plyusnin A. Non-covalent interaction between nucleocapsid protein of Tula hantavirus and small ubiquitin-related modifier-1, SUMO-1. Virus Res. 92(1), 37–45 (2003).
  • Weldon RA Jr, Sarkar P, Brown SM, Weldon SK. Mason-Pfizer monkey virus Gag proteins interact with the human sumo conjugating enzyme, hUbc9. Virology 314(1), 62–73 (2003).
  • Chang TH, Kubota T, Matsuoka M et al. Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS Pathog. 5(6), e1000493 (2009).
  • Li SJ, Hochstrasser M. A new protease required for cell-cycle progression in yeast. Nature 398(6724), 246–251 (1999).
  • Andrés G, Alejo A, Simón-Mateo C, Salas ML. African swine fever virus protease, a new viral member of the SUMO-1-specific protease family. J. Biol. Chem. 276(1), 780–787 (2001).
  • Ritchie KJ, Hahn CS, Kim KI et al. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat. Med. 10(12), 1374–1378 (2004).
  • Yuan W, Krug RM. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 20(3), 362–371 (2001).
  • Furman MH, Ploegh HL. Lessons from viral manipulation of protein disposal pathways. J. Clin. Invest. 110(7), 875–879 (2002).
  • Lenschow DJ, Giannakopoulos NV, Gunn LJ et al. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J. Virol. 79(22), 13974–13983 (2005).
  • Reinert JT, Pitha-Rowe I, Lu G et al. ISG15 enhances the innate antiviral response by inhibition of IRF-3 degradation. Cell Mol. Biol. 52, 29–41 (2006).
  • Durfee LA, Lyon N, Seo K, Huibregtse JM. The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15. Mol. Cell 38(5), 722–732 (2010).
  • Recht M, Borden EC, Knight E Jr. A human 15-kDa IFN-induced protein induces the secretion of IFN-gamma. J. Immunol. 147(8), 2617–2623 (1991).
  • Ritchie KJ, Malakhov MP, Hetherington CJ et al. Dysregulation of protein modification by ISG15 results in brain cell injury. Genes Dev. 16(17), 2207–2212 (2002).
  • Osiak A, Utermöhlen O, Niendorf S, Horak I, Knobeloch KP. ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol. Cell. Biol. 25(15), 6338–6345 (2005).
  • Lenschow DJ, Lai C, Frias-Staheli N et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl Acad. Sci. USA 104(4), 1371–1376 (2007).
  • Knobeloch KP, Utermöhlen O, Kisser A, Prinz M, Horak I. Reexamination of the role of ubiquitin-like modifier ISG15 in the phenotype of UBP43-deficient mice. Mol. Cell. Biol. 25(24), 11030–11034 (2005).
  • Kim MJ, Hwang SY, Imaizumi T, Yoo JY. Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J. Virol. 82(3), 1474–1483 (2008).
  • Chen L, Sun J, Meng L, Heathcote J, Edwards AM, McGilvray ID. ISG15, a ubiquitin-like interferon-stimulated gene, promotes hepatitis C virus production in vitro: implications for chronic infection and response to treatment. J. Gen. Virol. 91(Pt 2), 382–388 (2010).
  • Broering R, Zhang X, Kottilil S et al. The interferon stimulated gene 15 functions as a proviral factor for the hepatitis C virus and as a regulator of the IFN response. Gut 59(8), 1111–1119 (2010).
  • Jones DM, Domingues P, Targett-Adams P, McLauchlan J. Comparison of U2OS and Huh-7 cells for identifying host factors that affect hepatitis C virus RNA replication. J. Gen. Virol. 91(Pt 9), 2238–2248 (2010).
  • Kim MJ, Yoo JY. Inhibition of hepatitis C virus replication by IFN-mediated ISGylation of HCV-NS5A. J. Immunol. 185(7), 4311–4318 (2010).
  • Ahlquist P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296(5571), 1270–1273 (2002).
  • Banerjee R, Weidman MK, Echeverri A, Kundu P, Dasgupta A. Regulation of poliovirus 3C protease by the 2C polypeptide. J. Virol. 78(17), 9243–9256 (2004).
  • Kerkvliet J, Zoecklein L, Papke L et al. Transgenic expression of the 3D polymerase inhibits Theiler’s virus infection and demyelination. J. Virol. 83(23), 12279–12289 (2009).
  • Losick VP, Schlax PE, Emmons RA, Lawson TG. Signals in hepatitis A virus P3 region proteins recognized by the ubiquitin-mediated proteolytic system. Virology 309(2), 306–319 (2003).
  • Gao L, Tu H, Shi ST et al. Interaction with a ubiquitin-like protein enhances the ubiquitination and degradation of hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 77(7), 4149–4159 (2003).
  • Welbourn S, Green R, Gamache I et al. Hepatitis C virus NS2/3 processing is required for NS3 stability and viral RNA replication. J. Biol. Chem. 280(33), 29604–29611 (2005).
  • Khaliq S, Jahan S, Pervaiz A. Sequence variability of HCV Core region: important predictors of HCV induced pathogenesis and viral production. Emer. Infect. Dis. 11(3), 543–556 (2011).
  • Shirakura M, Murakami K, Ichimura T et al. E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. J. Virol. 81(3), 1174–1185 (2007).
  • Yuksek K, Chen WL, Chien D, Ou JH. Ubiquitin-independent degradation of hepatitis C virus F protein. J. Virol. 83(2), 612–621 (2009).
  • Chen L, Borozan I, Feld J et al. Hepatic gene expression discriminates responders and nonresponders in treatment of chronic hepatitis C viral infection. Gastroenterology 128(5), 1437–1444 (2005).
  • Randall G, Chen L, Panis M et al. Silencing of USP18 potentiates the antiviral activity of interferon against hepatitis C virus infection. Gastroenterology 131(5), 1584–1591 (2006).
  • Chen L, Li S, McGilvray I. The ISG15/USP18 ubiquitin-like pathway (ISGylation system) in hepatitis C virus infection and resistance to interferon therapy. Int. J. Biochem. Cell Biol. 43(10), 1427–1431 (2011).
  • Xiao C, Qin B, Chen L, Liu H, Zhu Y, Lu X. Preactivation of the interferon signalling in liver is correlated with nonresponse to interferon alpha therapy in patients chronically infected with hepatitis B virus. J. Viral Hepat. 19(2), e1–e10 (2012).
  • Zhu Y, Qin B, Xiao C, Lu X, Chen L. Cell-type specific interferon stimulated gene staining in liver underlies response to interferon therapy in chronic HBV infected patients. Dig. Dis. Sci. 57(9), 2355–2361 (2012).
  • Gale M Jr, Sen GC. Viral evasion of the interferon system. J. Interferon Cytokine Res. 29(9), 475–476 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.