339
Views
30
CrossRef citations to date
0
Altmetric
Review

Proteomic profiling of the contractile apparatus from skeletal muscle

&
Pages 239-257 | Published online: 09 Jan 2014

References

  • Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng. 11, 49–79 (2009).
  • Mallick P, Kuster B. Proteomics: a pragmatic perspective. Nat. Biotechnol. 28(7), 695–709 (2010).
  • Walther TC, Mann M. Mass spectrometry-based proteomics in cell biology. J. Cell Biol. 190(4), 491–500 (2010).
  • Legrain P, Aebersold R, Archakov A et al. The human proteome project: current state and future direction. Mol. Cell Proteomics 10(7), M111.009993 (2011).
  • Paik YK, Omenn GS, Uhlen M et al. Standard guidelines for the chromosome-centric human proteome project. J. Proteome Res. 11(4), 2005–2013 (2012).
  • Altelaar AF, Heck AJ. Trends in ultrasensitive proteomics. Curr. Opin. Chem. Biol. 16(1–2), 206–213 (2012).
  • Angel TE, Aryal UK, Hengel SM et al. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem. Soc. Rev. 41(10), 3912–3928 (2012).
  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science 312(5771), 212–217 (2006).
  • Han X, Aslanian A, Yates JR 3rd. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 12(5), 483–490 (2008).
  • Chait BT. Mass spectrometry in the postgenomic era. Annu. Rev. Biochem. 80, 239–246 (2011).
  • Altelaar AF, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat. Rev. Genet. 14(1), 35–48 (2013).
  • Højlund K, Yi Z, Hwang H et al. Characterization of the human skeletal muscle proteome by one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. Mol. Cell Proteomics 7(2), 257–267 (2008).
  • Parker KC, Walsh RJ, Salajegheh M et al. Characterization of human skeletal muscle biopsy samples using shotgun proteomics. J. Proteome Res. 8(7), 3265–3277 (2009).
  • Drexler HC, Ruhs A, Konzer A et al. On marathons and sprints: an integrated quantitative proteomics and transcriptomics analysis of differences between slow and fast muscle fibers. Mol. Cell Proteomics 11(6), M111.010801 (2012).
  • Pette D, Staron RS. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev. Physiol. Biochem. Pharmacol. 116, 1–76 (1990).
  • Canepari M, Pellegrino MA, D’Antona G, Bottinelli R. Skeletal muscle fibre diversity and the underlying mechanisms. Acta Physiol. (Oxf.) 199(4), 465–476 (2010).
  • Okumura N, Hashida-Okumura A, Kita K et al. Proteomic analysis of slow- and fast-twitch skeletal muscles. Proteomics 5(11), 2896–2906 (2005).
  • Capitanio D, Viganò A, Ricci E, Cerretelli P, Wait R, Gelfi C. Comparison of protein expression in human deltoideus and vastus lateralis muscles using two-dimensional gel electrophoresis. Proteomics 5(10), 2577–2586 (2005).
  • Metskas LA, Kulp M, Scordilis SP. Gender dimorphism in the exercise-naïve murine skeletal muscle proteome. Cell. Mol. Biol. Lett. 15(3), 507–516 (2010).
  • Oh TS, Choi JW, Choi DK, Mukherjee R, Liu H, Yun JW. Gender dimorphism in skeletal muscle proteome between lean and diet-induced obese rats. Cell. Physiol. Biochem. 28(5), 981–996 (2011).
  • Craig R. The structure of the contractile filaments. In: Myology (2nd Edition). Engel AG, Franzini-Armstrong C (Eds). McGraw-Hill Inc., NY, USA, 134–175 (1994).
  • Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol. Rev. 80(2), 853–924 (2000).
  • Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc. Res. Tech. 50(6), 500–509 (2000).
  • Craig R, Woodhead JL. Structure and function of myosin filaments. Curr. Opin. Struct. Biol. 16(2), 204–212 (2006).
  • Bozzo C, Spolaore B, Toniolo L et al. Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles. FEBS J. 272(22), 5771–5785 (2005).
  • Kee AJ, Gunning PW, Hardeman EC. Diverse roles of the actin cytoskeleton in striated muscle. J. Muscle Res. Cell. Motil. 30(5-6), 187–197 (2009).
  • Dominguez R, Holmes KC. Actin structure and function. Annu. Rev. Biophys. 40, 169–186 (2011).
  • Swartz DR, Yang Z, Sen A, Tikunova SB, Davis JP. Myofibrillar troponin exists in three states and there is signal transduction along skeletal myofibrillar thin filaments. J. Mol. Biol. 361(3), 420–435 (2006).
  • Gunning P, O’Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol. Rev. 88(1), 1–35 (2008).
  • Ackermann MA, Kontrogianni-Konstantopoulos A. Myosin binding protein-C: a regulator of actomyosin interaction in striated muscle. J. Biomed. Biotechnol. 2011, 636403 (2011).
  • Takada F, Vander Woude DL, Tong HQ et al. Myozenin: an α-actinin- and γ-filamin-binding protein of skeletal muscle Z lines. Proc. Natl Acad. Sci. USA 98(4), 1595–1600 (2001).
  • Sadikot T, Hammond CR, Ferrari MB. Distinct roles for telethonin N- versus C-terminus in sarcomere assembly and maintenance. Dev. Dyn. 239(4), 1124–1135 (2010).
  • Ichinoseki-Sekine N, Yoshihara T, Kakigi R, Ogura Y, Sugiura T, Naito H. Fiber-type specific expression of a-actinin isoforms in rat skeletal muscle. Biochem. Biophys. Res. Commun. 419(2), 401–404 (2012).
  • Kojic S, Radojkovic D, Faulkner G. Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease. Crit. Rev. Clin. Lab. Sci. 48(5–6), 269–294 (2011).
  • Ackermann MA, Hu LY, Bowman AL, Bloch RJ, Kontrogianni-Konstantopoulos A. Obscurin interacts with a novel isoform of MyBP-C slow at the periphery of the sarcomeric M-band and regulates thick filament assembly. Mol. Biol. Cell 20(12), 2963–2978 (2009).
  • Lange S, Himmel M, Auerbach D et al. Dimerisation of myomesin: implications for the structure of the sarcomeric M-band. J. Mol. Biol. 345(2), 289–298 (2005).
  • Pappas CT, Bliss KT, Zieseniss A, Gregorio CC. The nebulin family: an actin support group. Trends Cell Biol. 21(1), 29–37 (2011).
  • Ottenheijm CA, Granzier H. Role of titin in skeletal muscle function and disease. Adv. Exp. Med. Biol. 682, 105–122 (2010).
  • Flück M, Hoppeler H. Molecular basis of skeletal muscle plasticity – from gene to form and function. Rev. Physiol. Biochem. Pharmacol. 146, 159–216 (2003).
  • Hood DA, Irrcher I, Ljubicic V, Joseph AM. Coordination of metabolic plasticity in skeletal muscle. J. Exp. Biol. 209(Pt 12), 2265–2275 (2006).
  • Harridge SD. Plasticity of human skeletal muscle: gene expression to in vivo function. Exp. Physiol. 92(5), 783–797 (2007).
  • Matsakas A, Patel K. Skeletal muscle fibre plasticity in response to selected environmental and physiological stimuli. Histol. Histopathol. 24(5), 611–629 (2009).
  • Ohlendieck K. Proteomics of skeletal muscle differentiation, neuromuscular disorders and fiber aging. Expert Rev. Proteomics 7(2), 283–296 (2010).
  • Gelfi C, Vasso M, Cerretelli P. Diversity of human skeletal muscle in health and disease: contribution of proteomics. J. Proteomics 74(6), 774–795 (2011).
  • Ohlendieck K. Proteomic identification of biomarkers of skeletal muscle disorders. Biomark. Med. 7(1), 169–186 (2013).
  • Clark KA, McElhinny AS, Beckerle MC, Gregorio CC. Striated muscle cytoarchitecture: an intricate web of form and function. Annu. Rev. Cell Dev. Biol. 18, 637–706 (2002).
  • Gannon J, Doran P, Kirwan A, Ohlendieck K. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age. Eur. J. Cell Biol. 88(11), 685–700 (2009).
  • Luther PK. The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling. J. Muscle Res. Cell. Motil. 30(5-6), 171–185 (2009).
  • Agarkova I, Perriard JC. The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere. Trends Cell Biol. 15(9), 477–485 (2005).
  • Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 91(4), 1447–1531 (2011).
  • Schiaffino S. Fibre types in skeletal muscle: a personal account. Acta Physiol. (Oxf.) 199(4), 451–463 (2010).
  • Burkholder TJ, Lieber RL. Sarcomere length operating range of vertebrate muscles during movement. J. Exp. Biol. 204(Pt 9), 1529–1536 (2001).
  • Huxley AF. Mechanics and models of the myosin motor. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355(1396), 433–440 (2000).
  • Huxley HE. Past, present and future experiments on muscle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355(1396), 539–543 (2000).
  • Sellers JR. Fifty years of contractility research post sliding filament hypothesis. J. Muscle Res. Cell. Motil. 25(6), 475–482 (2004).
  • Holmes KC. The swinging lever-arm hypothesis of muscle contraction. Curr. Biol. 7(2), R112–R118 (1997).
  • Offer G, Ranatunga KW. Crossbridge and filament compliance in muscle: implications for tension generation and lever arm swing. J. Muscle Res. Cell. Motil. 31(4), 245–265 (2010).
  • Sun Y, Goldman YE. Lever-arm mechanics of processive myosins. Biophys. J. 101(1), 1–11 (2011).
  • Mok GF, Sweetman D. Many routes to the same destination: lessons from skeletal muscle development. Reproduction 141(3), 301–312 (2011).
  • Buckingham M, Bajard L, Chang T et al. The formation of skeletal muscle: from somite to limb. J. Anat. 202(1), 59–68 (2003).
  • Tannu NS, Rao VK, Chaudhary RM et al. Comparative proteomes of the proliferating C(2)C(12) myoblasts and fully differentiated myotubes reveal the complexity of the skeletal muscle differentiation program. Mol. Cell Proteomics 3(11), 1065–1082 (2004).
  • Kislinger T, Gramolini AO, Pan Y, Rahman K, MacLennan DH, Emili A. Proteome dynamics during C2C12 myoblast differentiation. Mol. Cell Proteomics 4(7), 887–901 (2005).
  • Cui Z, Chen X, Lu B et al. Preliminary quantitative profile of differential protein expression between rat L6 myoblasts and myotubes by stable isotope labeling with amino acids in cell culture. Proteomics 9(5), 1274–1292 (2009).
  • Gonnet F, Bouazza B, Millot GA et al. Proteome analysis of differentiating human myoblasts by dialysis-assisted two-dimensional gel electrophoresis (DAGE). Proteomics 8(2), 264–278 (2008).
  • Sun H, Zhu T, Ding F, Hu N, Gu X. Proteomic studies of rat tibialis anterior muscle during postnatal growth and development. Mol. Cell. Biochem. 332(1–2), 161–171 (2009).
  • Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol. Cell Proteomics 9(11), 2482–2496 (2010).
  • Chan CY, Masui O, Krakovska O et al. Identification of differentially regulated secretome components during skeletal myogenesis. Mol. Cell Proteomics 10(5), M110.004804 (2011).
  • Brown KJ, Formolo CA, Seol H et al. Advances in the proteomic investigation of the cell secretome. Expert Rev. Proteomics 9(3), 337–345 (2012).
  • Yoon JH, Kim J, Song P, Lee TG, Suh PG, Ryu SH. Secretomics for skeletal muscle cells: a discovery of novel regulators? Adv. Biol. Regul. 52(2), 340–350 (2012).
  • Pedersen BK. Muscles and their myokines. J. Exp. Biol. 214(Pt 2), 337–346 (2011).
  • Kravchenko IV, Furalyov VA, Popov VO. Stimulation of mechano-growth factor expression by myofibrillar proteins in murine myoblasts and myotubes. Mol. Cell. Biochem. 363(1–2), 347–355 (2012).
  • Burniston JG, Hoffman EP. Proteomic responses of skeletal and cardiac muscle to exercise. Expert Rev. Proteomics 8(3), 361–377 (2011).
  • Holloway KV, O’Gorman M, Woods P et al. Proteomic investigation of changes in human vastus lateralis muscle in response to interval-exercise training. Proteomics 9(22), 5155–5174 (2009).
  • Norheim F, Raastad T, Thiede B, Rustan AC, Drevon CA, Haugen F. Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am. J. Physiol. Endocrinol. Metab. 301(5), E1013–E1021 (2011).
  • Hody S, Leprince P, Sergeant K et al. Human muscle proteome modifications after acute or repeated eccentric exercises. Med. Sci. Sports Exerc. 43(12), 2281–2296 (2011).
  • Egan B, Dowling P, O’Connor PL et al. 2-D DIGE analysis of the mitochondrial proteome from human skeletal muscle reveals time course-dependent remodelling in response to 14 consecutive days of endurance exercise training. Proteomics 11(8), 1413–1428 (2011).
  • Malm C, Yu JG. Exercise-induced muscle damage and inflammation: re-evaluation by proteomics. Histochem. Cell Biol. 138(1), 89–99 (2012).
  • Guelfi KJ, Casey TM, Giles JJ, Fournier PA, Arthur PG. A proteomic analysis of the acute effects of high-intensity exercise on skeletal muscle proteins in fasted rats. Clin. Exp. Pharmacol. Physiol. 33(10), 952–957 (2006).
  • Burniston JG. Changes in the rat skeletal muscle proteome induced by moderate-intensity endurance exercise. Biochim. Biophys. Acta 1784(7-8), 1077–1086 (2008).
  • Yamaguchi W, Fujimoto E, Higuchi M, Tabata I. A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle. J. Biochem. 148(3), 327–333 (2010).
  • Magherini F, Abruzzo PM, Puglia M et al. Proteomic analysis and protein carbonylation profile in trained and untrained rat muscles. J. Proteomics 75(3), 978–992 (2012).
  • Gandra PG, Valente RH, Perales J, Pacheco AG, Macedo DV. Proteomic analysis of rat skeletal muscle submitted to one bout of incremental exercise. Scand. J. Med. Sci. Sports 22(2), 207–216 (2012).
  • Gandra PG, Valente RH, Perales J, Pacheco AG, Macedo DV. Proteomic profiling of skeletal muscle in an animal model of overtraining. Proteomics 12(17), 2663–2667 (2012).
  • Ohlendieck K, Frömming GR, Murray BE et al. Effects of chronic low-frequency stimulation on Ca2+-regulatory membrane proteins in rabbit fast muscle. Pflugers Arch. 438(5), 700–708 (1999).
  • Ohlendieck K. Proteomic profiling of skeletal muscle plasticity. Muscle Lig. Tend. J. 1(4), 119–126 (2011).
  • Donoghue P, Doran P, Dowling P, Ohlendieck K. Differential expression of the fast skeletal muscle proteome following chronic low-frequency stimulation. Biochim. Biophys. Acta 1752(2), 166–176 (2005).
  • Donoghue P, Doran P, Wynne K, Pedersen K, Dunn MJ, Ohlendieck K. Proteomic profiling of chronic low-frequency stimulated fast muscle. Proteomics 7(18), 3417–3430 (2007).
  • Rabilloud T, Chevallet M, Luche S, Lelong C. Two-dimensional gel electrophoresis in proteomics: past, present and future. J. Proteomics 73(11), 2064–2077 (2010).
  • Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 6(1), 25–39 (2013).
  • Fanzani A, Conraads VM, Penna F, Martinet W. Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J. Cachexia Sarcopenia Muscle 3(3), 163–179 (2012).
  • Donoghue P, Ribaric S, Moran B, Cebasek V, Erzen I, Ohlendieck K. Early effects of denervation on Ca(2+)-handling proteins in skeletal muscle. Int. J. Mol. Med. 13(6), 767–772 (2004).
  • Moriggi M, Cassano P, Vasso M et al. A DIGE approach for the assessment of rat soleus muscle changes during unloading: effect of acetyl-l-carnitine supplementation. Proteomics 8(17), 3588–3604 (2008).
  • Sato Y, Shimizu M, Mizunoya W et al. Differential expression of sarcoplasmic and myofibrillar proteins of rat soleus muscle during denervation atrophy. Biosci. Biotechnol. Biochem. 73(8), 1748–1756 (2009).
  • Sun H, Li M, Gong L, Liu M, Ding F, Gu X. iTRAQ-coupled 2D LC-MS/MS analysis on differentially expressed proteins in denervated tibialis anterior muscle of Rattus norvegicus. Mol. Cell. Biochem. 364(1-2), 193–207 (2012).
  • Ferreira R, Vitorino R, Neuparth MJ, Appell HJ, Duarte JA, Amado F. Proteolysis activation and proteome alterations in murine skeletal muscle submitted to 1 week of hindlimb suspension. Eur. J. Appl. Physiol. 107(5), 553–563 (2009).
  • Moriggi M, Vasso M, Fania C et al. Long term bed rest with and without vibration exercise countermeasures: effects on human muscle protein dysregulation. Proteomics 10(21), 3756–3774 (2010).
  • Marimuthu K, Murton AJ, Greenhaff PL. Mechanisms regulating muscle mass during disuse atrophy and rehabilitation in humans. J. Appl. Physiol. 110(2), 555–560 (2011).
  • Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J. From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur. J. Appl. Physiol. 101(2), 143–194 (2007).
  • Parker KC, Kong SW, Walsh RJ et al. Fast-twitch sarcomeric and glycolytic enzyme protein loss in inclusion body myositis. Muscle Nerve 39(6), 739–753 (2009).
  • Sela I, Milman Krentsis I, Shlomai Z et al. The proteomic profile of hereditary inclusion body myopathy. PLoS ONE 6(1), e16334 (2011).
  • Hwang H, Bowen BP, Lefort N et al. Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and Type 2 diabetes. Diabetes 59(1), 33–42 (2010).
  • Giebelstein J, Poschmann G, Højlund K et al. The proteomic signature of insulin-resistant human skeletal muscle reveals increased glycolytic and decreased mitochondrial enzymes. Diabetologia 55(4), 1114–1127 (2012).
  • Thingholm TE, Bak S, Beck-Nielsen H, Jensen ON, Gaster M. Characterization of human myotubes from Type 2 diabetic and nondiabetic subjects using complementary quantitative mass spectrometric methods. Mol. Cell Proteomics 10(9), M110.006650 (2011).
  • Mullen E, Ohlendieck K. Proteomic profiling of non-obese Type 2 diabetic skeletal muscle. Int. J. Mol. Med. 25(3), 445–458 (2010).
  • Wijers SL, Smit E, Saris WH, Mariman EC, van Marken Lichtenbelt WD. Cold- and overfeeding-induced changes in the human skeletal muscle proteome. J. Proteome Res. 9(5), 2226–2235 (2010).
  • Doran P, Martin G, Dowling P, Jockusch H, Ohlendieck K. Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP. Proteomics 6(16), 4610–4621 (2006).
  • Doran P, Dowling P, Donoghue P, Buffini M, Ohlendieck K. Reduced expression of regucalcin in young and aged mdx diaphragm indicates abnormal cytosolic calcium handling in dystrophin-deficient muscle. Biochim. Biophys. Acta 1764(4), 773–785 (2006).
  • Guevel L, Lavoie JR, Perez-Iratxeta C et al. Quantitative proteomic analysis of dystrophic dog muscle. J. Proteome Res. 10(5), 2465–2478 (2011).
  • Rayavarapu S, Coley W, Cakir E et al. Identification of disease specific pathways using in vivo SILAC proteomics in dystrophin deficient mdx mouse. Mol. Cell Proteomics 12(5), 1061–1073 (2013).
  • Carberry S, Zweyer M, Swandulla D, Ohlendieck K. Proteomics reveals drastic increase of extracellular matrix proteins collagen and dermatopontin in the aged mdx diaphragm model of Duchenne muscular dystrophy. Int. J. Mol. Med. 30(2), 229–234 (2012).
  • De Palma S, Morandi L, Mariani E et al. Proteomic investigation of the molecular pathophysiology of dysferlinopathy. Proteomics 6(1), 379–385 (2006).
  • Staunton L, Jockusch H, Ohlendieck K. Proteomic analysis of muscle affected by motor neuron degeneration: the Wobbler mouse model of amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 406(4), 595–600 (2011).
  • Staunton L, Jockusch H, Wiegand C, Albrecht T, Ohlendieck K. Identification of secondary effects of hyperexcitability by proteomic profiling of myotonic mouse muscle. Mol. Biosyst. 7(8), 2480–2489 (2011).
  • Amato AA, Barohn RJ. Inclusion body myositis: old and new concepts. J. Neurol. Neurosurg. Psychiatr. 80(11), 1186–1193 (2009).
  • Park SW, Goodpaster BH, Lee JS et al.; Health, Aging, and Body Composition Study. Excessive loss of skeletal muscle mass in older adults with Type 2 diabetes. Diabetes Care 32(11), 1993–1997 (2009).
  • Andersen H. Motor dysfunction in diabetes. Diabetes Metab. Res. Rev. 28(Suppl. 1), 89–92 (2012).
  • Ohlendieck K. Pathobiochemical changes in diabetic skeletal muscle as revealed by mass-spectrometry-based proteomics. J. Nutr. Metab. 2012, 893876 (2012).
  • Lewis C, Carberry S, Ohlendieck K. Proteomic profiling of X-linked muscular dystrophy. J. Muscle Res. Cell. Motil. 30(7-8), 267–269 (2009).
  • Capitanio D, Vasso M, Ratti A et al. Molecular signatures of amyotrophic lateral sclerosis disease progression in hind and forelimb muscles of an SOD1(G93A) mouse model. Antioxid. Redox Signal. 17(10), 1333–1350 (2012).
  • Edström E, Altun M, Bergman E et al. Factors contributing to neuromuscular impairment and sarcopenia during aging. Physiol. Behav. 92(1-2), 129–135 (2007).
  • Faulkner JA, Larkin LM, Claflin DR, Brooks SV. Age-related changes in the structure and function of skeletal muscles. Clin. Exp. Pharmacol. Physiol. 34(11), 1091–1096 (2007).
  • Berger MJ, Doherty TJ. Sarcopenia: prevalence, mechanisms, and functional consequences. Interdiscip. Top. Gerontol. 37, 94–114 (2010).
  • Doran P, Donoghue P, O’Connell K, Gannon J, Ohlendieck K. Proteomics of skeletal muscle aging. Proteomics 9(4), 989–1003 (2009).
  • Ohlendieck K. Proteomic profiling of fast-to-slow muscle transitions during aging. Front. Physiol. 2, 105 (2011).
  • Gelfi C, Vigano A, Ripamonti M et al. The human muscle proteome in aging. J. Proteome Res. 5(6), 1344–1353 (2006).
  • Staunton L, Zweyer M, Swandulla D, Ohlendieck K. Mass spectrometry-based proteomic analysis of middle-aged vs. aged vastus lateralis reveals increased levels of carbonic anhydrase isoform 3 in senescent human skeletal muscle. Int. J. Mol. Med. 30(4), 723–733 (2012).
  • Doran P, O’Connell K, Gannon J, Kavanagh M, Ohlendieck K. Opposite pathobiochemical fate of pyruvate kinase and adenylate kinase in aged rat skeletal muscle as revealed by proteomic DIGE analysis. Proteomics 8(2), 364–377 (2008).
  • Piec I, Listrat A, Alliot J, Chambon C, Taylor RG, Bechet D. Differential proteome analysis of aging in rat skeletal muscle. FASEB J. 19(9), 1143–1145 (2005).
  • Capitanio D, Vasso M, Fania C et al. Comparative proteomic profile of rat sciatic nerve and gastrocnemius muscle tissues in ageing by 2-D DIGE. Proteomics 9(7), 2004–2020 (2009).
  • Gannon J, Staunton L, O’Connell K, Doran P, Ohlendieck K. Phosphoproteomic analysis of aged skeletal muscle. Int. J. Mol. Med. 22(1), 33–42 (2008).
  • Hollung K, Veiseth E, Jia X, Færgestad EM, Hildrum KI. Application of proteomics to understand the molecular mechanisms behind meat quality. Meat Sci. 77(1), 97–104 (2007).
  • Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I. Farm animal proteomics – a review. J. Proteomics 74(3), 282–293 (2011).
  • D’Alessandro A, Zolla L. Meat science: from proteomics to integrated omics towards system biology. J. Proteomics 78, 558–577 (2013).
  • Lametsch R, Roepstorff P, Bendixen E. Identification of protein degradation during post-mortem storage of pig meat. J. Agric. Food Chem. 50(20), 5508–5512 (2002).
  • Jia X, Ekman M, Grove H et al. Proteome changes in bovine longissimus thoracis muscle during the early postmortem storage period. J. Proteome Res. 6(7), 2720–2731 (2007).
  • Park BY, Kim NK, Lee CS, Hwang IH. Effect of fiber type on postmortem proteolysis in longissimus muscle of Landrace and Korean native black pigs. Meat Sci. 77(4), 482–491 (2007).
  • Bjarnadóttir SG, Hollung K, Faergestad EM, Veiseth-Kent E. Proteome changes in bovine longissimus thoracis muscle during the first 48 h postmortem: shifts in energy status and myofibrillar stability. J. Agric. Food Chem. 58(12), 7408–7414 (2010).
  • Pioselli B, Paredi G, Mozzarelli A. Proteomic analysis of pork meat in the production of cooked ham. Mol. Biosyst. 7(7), 2252–2260 (2011).
  • Addis MF, Pisanu S, Preziosa E et al. 2D DIGE/MS to investigate the impact of slaughtering techniques on postmortem integrity of fish filet proteins. J. Proteomics 75(12), 3654–3664 (2012).
  • Picard B, Berri C, Lefaucheur L, Molette C, Sayd T, Terlouw C. Skeletal muscle proteomics in livestock production. Brief. Funct. Genomics 9(3), 259–278 (2010).
  • de Almeida AM, Bendixen E. Pig proteomics: a review of a species in the crossroad between biomedical and food sciences. J. Proteomics 75(14), 4296–4314 (2012).
  • Paredi G, Raboni S, Bendixen E, de Almeida AM, Mozzarelli A. ‘Muscle to meat’ molecular events and technological transformations: the proteomics insight. J. Proteomics 75(14), 4275–4289 (2012).
  • Montowska M, Pospiech E. Differences in two-dimensional gel electrophoresis patterns of skeletal muscle myosin light chain isoforms between Bos taurus, Sus scrofa and selected poultry species. J. Sci. Food Agric. 91(13), 2449–2456 (2011).
  • Montowska M, Pospiech E. Myosin light chain isoforms retain their species-specific electrophoretic mobility after processing, which enables differentiation between six species: 2DE analysis of minced meat and meat products made from beef, pork and poultry. Proteomics 12(18), 2879–2889 (2012).
  • Lee SH, Joo ST, Ryu YC. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci. 86(1), 166–170 (2010).
  • Huff Lonergan E, Zhang W, Lonergan SM. Biochemistry of postmortem muscle – lessons on mechanisms of meat tenderization. Meat Sci. 86(1), 184–195 (2010).
  • Zapata I, Zerby HN, Wick M. Functional proteomic analysis predicts beef tenderness and the tenderness differential. J. Agric. Food Chem. 57(11), 4956–4963 (2009).
  • Polati R, Menini M, Robotti E et al. Proteomic changes involved in tenderization of bovine Longissimus dorsi muscle during prolonged ageing. Food Chem. 135(3), 2052–2069 (2012).
  • Joseph P, Suman SP, Rentfrow G, Li S, Beach CM. Proteomics of muscle-specific beef color stability. J. Agric. Food Chem. 60(12), 3196–3203 (2012).
  • Ino Y, Hirano H. Mass spectrometric characterization of proteins transferred from polyacrylamide gels to membrane filters. FEBS J. 278(20), 3807–3814 (2011).
  • Simspon RJ. On-membrane proteolytic digestion of electroblotted proteins. Cold Spring Harb. Protoc. 2011(8), 995–997 (2011).
  • Lewis C, Ohlendieck K. Mass spectrometric identification of dystrophin isoform Dp427 by on-membrane digestion of sarcolemma from skeletal muscle. Anal. Biochem. 404(2), 197–203 (2010).
  • Staunton L, Ohlendieck K. Mass spectrometric characterization of the sarcoplasmic reticulum from rabbit skeletal muscle by on-membrane digestion. Protein Pept. Lett. 19(3), 252–263 (2012).
  • Ohlendieck K. On-membrane digestion technology for muscle proteomics. J. Membr. Sep. Technol. 2(1), 1–12 (2013).
  • Xie F, Liu T, Qian WJ, Petyuk VA, Smith RD. Liquid chromatography–mass spectrometry-based quantitative proteomics. J. Biol. Chem. 286(29), 25443–25449 (2011).
  • Reed PW, Densmore A, Bloch RJ. Optimization of large gel 2D electrophoresis for proteomic studies of skeletal muscle. Electrophoresis 33(8), 1263–1270 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.