93
Views
26
CrossRef citations to date
0
Altmetric
Review

Do stem-like cells play a role in drug resistance of sarcomas?

Pages 261-270 | Published online: 10 Jan 2014

References

  • Horner MJ, Ries LAG, Krapcho M et al. (Eds). SEER Cancer Statistics Review, 1975–2006. National Cancer Institute, Bethesda, MD, USA (2009).
  • Meyers PA, Schwartz CL, Krailo M et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J. Clin. Oncol.23, 2004–2011 (2005).
  • Bacci G, Formi C, Longhi A et al. Long-term outcome for patients with non-metastatic Ewing’s sarcoma treated with adjuvant and neoadjuvant chemotherapies. 402 patients treated at Rizzoli between 1972 and 1992. Eur. J. Cancer40, 73–83 (2004).
  • Fletcher CDM, Rydholm A, Singer S. Soft tissue tumours: epidemiology, clinical features, histopathological typing and grading. In: WHO Classification of Tumours. Pathology & Genetics. Tumours of Soft Tissue and Bone. Fletcher CDM, Unni KK, Mertens F (Eds). IARC Press, Lyon, France 12–17 (2002).
  • Mackall CL, Meltzer PS, Helman LJ. Focus on sarcomas. Cancer Cell2(3), 175–178 (2002).
  • Strauss SJ, Mactiernan A, Whelan JS. Late relapse of osteosarcoma: implications for follow-up and screening. Pediatr. Blood Cancer43, 692–697 (2004).
  • Bacci G, Balladelli A, Forni C et al. Adjuvant and neo-adjuvant chemotherapy for Ewing’s sarcoma family tumors and osteosarcoma of the extremity: further outcome for patients event-free survivors 5 years from the beginning of treatment. Ann. Oncol.18, 2037–2040 (2007).
  • Moserle L, Amadori A, Indraccolo S. The angiogenic switch: implications in the regulation of tumor dormancy. Curr. Mol. Med.9, 935–941 (2009).
  • Mimeault M, Batra SK. Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells24, 2319–2345 (2006).
  • Papadopoulos N, Kinzler KW, Vogelstein B. The role of companion diagnostics in the development and use of mutation-targeted cancer therapies. Nat. Biotechnol.24(8), 985–995 (2006).
  • Galmozzi E, Facchetti F, La Porta CA. Cancer stem cells and therapeutic perspectives. Curr. Med. Chem.13, 603–607 (2006).
  • Beachy SA, Mali AM, Koppikar CB, Kurrey NK. Tissue repair and stem cell renewal in carcinogenesis. Nature432, 324–331 (2004).
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006).
  • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007).
  • Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene23, 7274–7282 (2004).
  • Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea – a paradigm shift. Cancer Res.66, 1883–1890 (2006).
  • Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu. Rev. Med.58, 267–284 (2007).
  • Sell S. Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol.51, 1–28 (2004).
  • Sell S. Leukemia: stem cells, maturation arrest, and differentiation therapy. Stem Cell Rev.1, 197–205 (2005).
  • Tokar EJ, Ancrile BB, Cunha GR, Webber MM. Stem/progenitor and intermediate cell types and the origin of human prostate cancer. Differentiation73, 463–473 (2005).
  • Villadsen R. In search of a stem cell hierarchy in the human breast and its relevance to breast cancer evolution. APMIS113, 903–921 (2005).
  • Tan BT, Park CY, Ailles LE, Weissman IL. The cancer stem cell hypothesis: a work in progress. Lab. Invest.86, 1203–1207 (2006).
  • Ben-Porath I, Thomson MW, Carey VJ et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet.40, 499–507 (2008).
  • Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J. Clin. Invest.115, 1503–1510 (2005).
  • Woodward WA, Chen MS, Behbod F, Rosen JM. On mammary stem cells. J. Cell. Sci.118, 3585–3594 (2005).
  • Liu S, Dontu G, Mantle ID et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res.66, 6063–6071 (2006).
  • Chen MS, Woodward WA, Behbod F et al. Wnt/b-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. J. Cell. Sci.120, 468–475 (2007).
  • Wang SF, Aoki M, Nakashima Y et al. Development of Notch-dependent T-cell leukemia by deregulated Rap1 signaling. Blood111, 2878–2886 (2008).
  • Bapat SA, Mali AM, Kollikar CB, Kurrey NK. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res.65, 3025–3029 (2005).
  • Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis26, 495–502 (2005).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004).
  • Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immunol.5, 738–743 (2004).
  • Ponti D, Costa A, Zaffaroni N et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res.65, 5506–5511 (2005).
  • Ricci-Vitiani L, Lombardi DG, Pilozzi E et al. Identification and expansion of human colon-cancer-initiating cells. Nature445, 111–115 (2007).
  • Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature367, 645–648 (1994).
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med.3, 730–737 (1997).
  • Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res.10, R25 (2008).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63, 5821–5828 (2003).
  • Shepherd CJ, Rizzo S, Ledaki I et al. Expression profiling of CD133+ and CD133- epithelial cells from human prostate. Prostate68, 1007–1024(2008).
  • Immervoll H, Hoem D, Sakariassen PO, Steffensen OJ, Molven A. Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer8, 8–48 (2008).
  • Li C, Heidt DG, Dalerba P et al. Identification of pancreatic cancer stem cells. Cancer Res.67, 1030–1037 (2007).
  • Todaro M, Alea MP, Di Stefano AB et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell1, 389–402 (2007).
  • Vermeulen L, Todaro M, de Sousa Mello F et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl Acad. Sci. USA105, 13427–13432 (2008).
  • Zou GM. Cancer initiating cells or cancer stem cells in the gastrointestinal tract and liver. J. Cell. Physiol.217, 598–604 (2008).
  • Eramo A, Lotti F, Sette G et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ.15, 504–514 (2008).
  • Gutova M, Najbauer J, Gevorgyan A et al. Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS ONE2, e243 (2007).
  • Ma S, Chan KW, Lee TK et al. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol. Cancer Res.6, 1146–1153 (2008).
  • Yang ZF, Ho DW, Ng MN et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell13, 153–157 (2008).
  • Ferrandina G, Bonanno G, Pierelli L et al. Expression of CD133-1 and CD133-2 in ovarian cancer. Int. J. Gynecol. Cancer.18, 506–514 (2008).
  • Zhang S, Balch C, Chan MW et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res.68, 4311–4320 (2008).
  • Challen GA, Little MH. A side order of stem cells: the SP phenotype. Stem Cells24, 3–12 (2006).
  • Ludwig A, Dietel M, Lage H. Identification of differentially expressed genes in classical and atypical multidrug-resistant gastric carcinoma cells. Anticancer Res.22, 3213–3221 (2002).
  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med.183, 1797–1806 (1996).
  • Hirschmann-Jax C, Foster AE, Wulf GG et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA101, 14228–14233 (2004).
  • Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc. Natl Acad. Sci. USA101, 781–786 (2004).
  • Kruger JA, Kaplan CD, Luo Y et al. Characterization of stem cell-like cancer cells in immune-competent mice. Blood108, 3906–3912 (2006).
  • Haraguchi N, Utsunomiya T, Inoue H et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells24, 506–513 (2006).
  • Ho MM, Ng AV, Lam S, Hung JY. Side population in human lung cancer cell lines and tumors in enriched with stem-like cancer cells. Cancer Res.67, 4827–4833 (2007).
  • Wang J, Guo LP, Chen LZ, Zeng YX, Lu SH. Identification of cancer stem cell-like side population in human nasopharyngeal carcinoma cell line. Cancer Res.67, 3716–3724 (2007).
  • Kim M, Turnquist H, Jackson J et al. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin. Cancer Res.8, 22–28 (2002).
  • Chute JP, Muramoto GG, Whitesides J et al. Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc. Natl Acad. Sci. USA103, 11707–11712 (2006).
  • Pearce DJ, Taussig D, Simpson C et al. Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells23, 752–760(2005).
  • Ginestier C, Hur MH, Charafe-Jauffret E et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell1, 555–567 (2007).
  • Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrinonis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia39, 193–206 (2002).
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).
  • Hemmati HD, Nakano I, Lazareff JA et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA100, 15178–15183 (2003).
  • Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat. Rev. Cancer3, 685–694 (2003).
  • Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res.18, 696–704 (2003).
  • Neiva K, Sun YX, Taichman RS. The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis. Braz. J. Med. Biol. Res.38, 1449–1454 (2005).
  • Jian Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature418, 41–49 (2002).
  • Zannettino AC, Harrison K, Joyner CJ, Triffitt JT, Simmons PJ. Molecular cloning of the cell surface antigen identified by the osteoprogenitor-specific monoclonal antibody, HOP-26. J. Cell. Biochem.89, 56–66 (2003).
  • Tondreau T, Meulman N, Delforge A et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells23, 1105–1112 (2005).
  • Tirode F, Laus-Duval K, Prieur A, Delorme B, Charbord P, Delattre O. Mesenchymal stem cell features of Ewing tumors. Cancer Cell11, 421–429 (2007).
  • Riggi N, Suvà M-L, Suvà D et al. EWS–FLI-1 expression triggers a Ewing’s sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res.68, 2176–2185 (2008).
  • Ren Y-X, Finckenstein FG, Abdueva DA et al. Mouse mesenchymal stem cells expressing PAX–FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res.68, 6587–6597 (2008).
  • Matushansky I, Hernando E, Socci N et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J. Clin. Invest.117, 3248–3257 (2007).
  • Gjerstorff M, Burns JS, Nielsen O, Kassem M, Ditzel H. Epigenetic modulation of cancer-germline antigen expression in tumorigenic human mesenchymal stem cells: implications for cancer therapy. Am. J. Pathol.175, 314–323 (2009).
  • Ki N, Yang R, Zhang W, Dorfman H, Rao P, Gorlick R. Genetically transforming human mesenchymal stem cells to sarcomas: changes in cellular phenotype and multilineage differentiation potential. Cancer115(20), 4795–806 (2009).
  • Lee N, Smolars AJ, Olson S et al. A potential role for Dkk-1 in the pathogenesis of osteosarcoma predicts novel diagnostic and treatment strategies. Br. J. Cancer97, 1552–1559 (2007).
  • Funes JM, Quintero M, Henderson S et al. Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc. Natl Acad. Sci. USA104, 6223–6228 (2007).
  • Gibbs CP, Kukekov VG, Reith JD et al. Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia7, 967–976 (2005).
  • Fujii H, Honoki K, Tsujiuchi T et al. Reduced expression of INK4a/ARF genes in stem-like sphere cells from rat sarcomas. Biochem. Biophys. Res. Commun.362, 773–778 (2007).
  • Wilson H, Huelsmeyer M, Chun R, Young KM, Friedrichs K, Argyle DJ. Isolation and characterization of cancer stem cells from canine osteosarcoma. Vet. J.175, 69–75 (2008).
  • Greco SJ, Liu K, Rameshwar P. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells25, 3143–3145 (2007).
  • Riekstina U, Cakstina I, Parfejevs V et al. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev. Rep. (2009) (Epub ahead of print).
  • Wu C, Wei Q, Utomo V et al. Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Res.67, 8216–8222 (2007).
  • Suvà M-L, Riggi N, Stehle J-C et al. Identification of cancer stem cells in Ewing’s sarcoma. Cancer Res.69, OF1–OF6 (2009)
  • Pozzobon M, Piccoli M, Ditadi A et al. Mesenchymal stromal cells can be derived from bone marrow CD133+ cells: implications for therapy. Stem Cells Dev.18, 497–510 (2009).
  • Dominici M, Le BK, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy8, 315–317 (2006).
  • Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of trans-differentiation and modes of tissue repair – current views. Stem Cells25, 2896–2902 (2007).
  • Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature432, 324–331 (2004).
  • Dean M, Fojo T, Bates S. Tumor stem cell and drug resistance. Nat. Rev. Cancer5, 275–284 (2005).
  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.65, 10946–10951 (2005).
  • Liu G, Yuan X, Zeng Z et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer5, 67–73 (2006).
  • Ravandi F, Burnett AK, Agura ED, Kantarjian HM. Progress in the treatment of acute myeloid leukemia. Cancer110, 1900–1910 (2007).
  • Woodward WA, Sulman EP. Cancer stem cells: markers or biomarkers? Cancer Metastasis Rev.27, 459–470 (2008).
  • Mimeault M, Hauke R, Batra SK. Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clin. Pharmacol. Ther.83, 673–691 (2008).
  • Ho MM, Hogge DE, Ling V. MDR1 and BCRP1 expression in leukemic progenitors correlates with chemotherapy response in acute myeloid leukemia. Exp. Hematol.36, 433–442 (2008).
  • Ravandi F, Estrov Z. Eradication of leukemia stem cells as a new goal of therapy in leukemia. Clin. Cancer Res.12, 340–344 (2006).
  • de Jonge-Peeters SD, Kuipers F, de Vries EG, Vellenga E. ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance. Crit. Rev. Oncol. Hematol.62, 214–226 (2007).
  • Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood99, 507–512 (2002).
  • Oda Y, Saito T, Tateishi N et al. ATP-binding cassette superfamily transporter gene expression in human soft tissue sarcomas. Int. J. Cancer114, 854–862 (2005).
  • Besançon R, Valsesia-Wittmann S, Puisieux A et al. Cancer stem cells: the emerging challenge of drug targeting. Curr. Med. Chem.16, 394–416 (2009).
  • Fujii H, Honoki K, Tsujiuchi T, Kido A, Yoshitani K, Takakura T. Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. Int. J. Oncology34, 1381–1386 (2009).
  • Gangemi R, Paleari L, Orengo AM et al. Cancer stem cells: a new paradigm for understanding tumor growth and progression and drug resistance. Curr. Med. Chem.16, 1688–1703 (2009).
  • Honoki K, Fujii H, Kido A et al. Possible involvement of stem-like population with elevated ALDH1 and DNA repair enzymes for drug resistance in human sarcoma. Proceedings of the 56th Orthopedic Research Society Annual Meeting. New Orleans, LA, USA 6–9 March 2010 (Abstract 1665).
  • Ponte-Sucre A. Availability and applications of ATP-binding cassette (ABC) transporter blockers. Appl. Microbiol. Biotechnol.76, 279–286 (2007).
  • Henrich CJ, Bokesch HR, Cantore M et al. A high-throughput cell-based assay for inhibitors of ABCG2 activity. J. Biomol. Screen.11, 176–183 (2006).
  • Colabufo NA, Berardi F, Cantore M et al. Small P-gp modulating molecules: SAR studies on tetrahydroisoquinoline derivatives. Bioorg. Med. Chem.16, 362–373 (2008).
  • Ho MM, Hogge DE, Ling V. MDR1 and BCRP1 expression in leukemic progenitors correlates with chemotherapy response in acute myeloid leukemia. Exp. Hematol.36, 433–442 (2008).
  • Loebinger MR, Giangreco A, Groot KR et al. Squamous cell cancers contain a side population of stem-like cells that are made chemosensitive by ABC transporter blockade. Br. J. Cancer98, 380–387 (2008).
  • Takeuchi A, Tsuchiya H, Yamamoto N et al. Caffeine-potentiated chemotherapy for patients with high-grade soft tissue sarcoma: long-term clinical outcome. Anticancer Res.27, 3489–3495 (2007).
  • Sabisz M, Skladanowski A. Modulation of cellular response to anticancer treatment by caffeine: inhibition of cell cycle checkpoints, DNA repair and more. Curr. Pharm. Biotech.9, 325–336 (2008).
  • Annerén C, Cowans CA, Melton DA. The Src family of tyrosine kinases is important for embryonic stem cell self-renewal. J. Biol. Chem.279, 31590–31598 (2004).
  • Shor AC, Keschman EA, Lee FY et al. Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival. Cancer Res.67, 2800–2808 (2007).
  • Spreafico A, Schenone S, Serchi T et al. Antiproliferative and proapoptotic activities of new pyrazolo[3,4-d]pyrimidine derivative Src kinase inhibitor in human osteosarcoma cells. FASEB J.22, 1560–1571 (2008).
  • Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin.55, 178–194 (2005).
  • Chawla SP, Tolcher AW, Staddon AP et al. Updated results of a Phase II trial of AP23573, a novel mTOR inhibitor, in patients with advanced soft tissue or bone sarcomas. J. Clin. Oncol.24, (2006) (Abstract 9505).
  • Le Cesne A, Blay JY, Judson I et al. Phase 2 study of ET-473 in advanced soft tissue sarcomas: a European Organization for the Research and Treatment of Cancer (EORTC) Soft Tissue and Bone Sarcoma Group trial. J. Clin. Oncol.23, 576–584 (2005).
  • Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene22, 7369–7375 (2003).
  • Scotlandi K, Remondini D, Castellani G et al. Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome. J. Clin. Oncol.27, 2209–2216 (2009).
  • Gupta PB, Onder TT, Jiang G et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell138, 645–659 (2009).
  • Hatfield S, Ruohola-Baker H. microRNA and stem cell function. Cell Tissue Res.331, 57–66 (2005).
  • Burns JS, Abdallah BM, Guldberg P et al. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res.65, 3126–3135 (2005).
  • Gjerstorff M, Burns JS, Nielsen O et al. Epigenetic modulation of cancer-germline antigen gene expression in tumorigenic human mesenchymal stem cells. Implication for cancer therapy. Am. J. Pathol.175, 314–323 (2009).
  • Mani SA, Guo W, Liao MJ et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell133, 704–715 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.