223
Views
28
CrossRef citations to date
0
Altmetric
Review

Glioma stem cell signaling: therapeutic opportunities and challenges

, &
Pages 709-722 | Published online: 10 Jan 2014

References

  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63(18), 5821–5828 (2003).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature432(7015), 396–401 (2004).
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100(7), 3983–3988 (2003).
  • Matsui W, Huff CA, Wang Q et al. Characterization of clonogenic multiple myeloma cells. Blood103(6), 2332–2336 (2004).
  • Collins AT, Maitland NJ. Prostate cancer stem cells. Eur. J. Cancer42(9), 1213–1218 (2006).
  • O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445(7123), 106–110 (2007).
  • Ricci-Vitiani L, Lombardi DG, Pilozzi E et al. Identification and expansion of human colon-cancer-initiating cells. Nature445(7123), 111–115 (2007).
  • Hemmati HD, Nakano I, Lazareff JA et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA100(25), 15178–15183 (2003).
  • Yuan X, Curtin J, Xiong Y et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene23(58), 9392–9400 (2004).
  • Galli R, Binda E, Orfanelli U et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res.64(19), 7011–7021 (2004).
  • Noble M, Dietrich J. Intersections between neurobiology and oncology: tumor origin, treatment and repair of treatment-associated damage. Trends Neurosci.25(2), 103–107 (2002).
  • Noble M, Dietrich J. The complex identity of brain tumors: emerging concerns regarding origin, diversity and plasticity. Trends Neurosci.27(3), 148–154 (2004).
  • Dietrich J, Imitola J, Kesari S. Mechanisms of disease: the role of stem cells in the biology and treatment of gliomas. Nat. Clin. Pract. Oncol.5(7), 393–404 (2008).
  • Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444(7120), 756–760 (2006).
  • Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat. Rev. Cancer5(4), 275–284 (2005).
  • Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J. Clin. Oncol.26(17), 2839–2845 (2008).
  • Rich JN. Cancer stem cells in radiation resistance. Cancer Res.67(19), 8980–8984 (2007).
  • Dietrich J, Norden AD, Wen PY. Emerging antiangiogenic treatments for gliomas – efficacy and safety issues. Curr. Opin. Neurol.21(6), 736–744 (2008).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Bao S, Wu Q, Sathornsumetee S et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res.66(16), 7843–7848 (2006).
  • Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene27(12), 1749–1758 (2008).
  • Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol.425(4), 479–494 (2000).
  • Wurmser AE, Palmer TD, Gage FH. Neuroscience. Cellular interactions in the stem cell niche. Science304(5675), 1253–1255 (2004).
  • Shen Q, Goderie SK, Jin L et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science304(5675), 1338–1340 (2004).
  • Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron41(5), 683–686 (2004).
  • Hagg T. Molecular regulation of adult CNS neurogenesis: an integrated view. Trends Neurosci.28(11), 589–595 (2005).
  • Calabrese C, Poppleton H, Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell11(1), 69–82 (2007).
  • Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci.12(11), 4565–4574 (1992).
  • Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science255(5052), 1707–1710 (1992).
  • Vescovi AL, Reynolds BA, Fraser DD, Weiss S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron11(5), 951–966 (1993).
  • Gritti A, Parati EA, Cova L et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci.16(3), 1091–1100 (1996).
  • Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci.17(15), 5820–5829 (1997).
  • Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci.19(19), 8487–8497 (1999).
  • Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D. Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol.208(1), 166–188 (1999).
  • Lillien L, Raphael H. BMP and FGF regulate the development of EGF-responsive neural progenitor cells. Development127(22), 4993–5005 (2000).
  • Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron36(6), 1021–1034 (2002).
  • Jackson EL, Garcia-Verdugo JM, Gil-Perotin S et al. PDGFR α-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron51(2), 187–199 (2006).
  • Shi Y, Sun G, Zhao C, Stewart R. Neural stem cell self-renewal. Crit. Rev. Oncol. Hematol.65(1), 43–53 (2008).
  • Schmidt NO, Koeder D, Messing M et al. Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche. Brain Res.1268, 24–37 (2009).
  • Joy A, Moffett J, Neary K et al. Nuclear accumulation of FGF-2 is associated with proliferation of human astrocytes and glioma cells. Oncogene14(2), 171–183 (1997).
  • Auguste P, Gursel DB, Lemiere S et al. Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis-dependent and -independent mechanisms. Cancer Res.61(4), 1717–1726 (2001).
  • Chi AS, Sorensen AG, Jain RK, Batchelor TT. Angiogenesis as a therapeutic target in malignant gliomas. Oncologist14(6), 621–636 (2009).
  • Martinho O, Longatto-Filho A, Lambros MB et al. Expression, mutation and copy number analysis of platelet-derived growth factor receptor A (PDGFRA) and its ligand PDGFA in gliomas. Br. J. Cancer101(6), 973–982 (2009).
  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455(7216), 1061–1068 (2008).
  • Kesari S, Stiles CD. The bad seed: PDGF receptors link adult neural progenitors to glioma stem cells. Neuron51(2), 151–153 (2006).
  • Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res.62(13), 3729–3735 (2002).
  • van der Valk P, Lindeman J, Kamphorst W. Growth factor profiles of human gliomas. Do non-tumour cells contribute to tumour growth in glioma? Ann. Oncol.8(10), 1023–1029 (1997).
  • Samuels Y, Wang Z, Bardelli A et al. High frequency of mutations of the PIK3CA gene in human cancers. Science304(5670), 554 (2004).
  • Castellino RC, Durden DL. Mechanisms of disease: the PI3K–Akt–PTEN signaling node – an intercept point for the control of angiogenesis in brain tumors. Nat. Clin. Pract. Neurol.3(12), 682–693 (2007).
  • Duerr EM, Rollbrocker B, Hayashi Y et al. PTEN mutations in gliomas and glioneuronal tumors. Oncogene16(17), 2259–2264 (1998).
  • Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol.22(14), 2954–2963 (2004).
  • Furnari FB, Fenton T, Bachoo RM et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev.21(21), 2683–2710 (2007).
  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP. Genes for epidermal growth factor receptor, transforming growth factor α, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res.51(8), 2164–2172 (1991).
  • Wong AJ, Ruppert JM, Bigner SH et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl Acad. Sci. USA89(7), 2965–2969 (1992).
  • Collins VP. Amplified genes in human gliomas. Semin. Cancer Biol.4(1), 27–32 (1993).
  • Mellinghoff IK, Wang MY, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353(19), 2012–2024 (2005).
  • Aldape KD, Ballman K, Furth A et al. Immunohistochemical detection of EGFRvIII in high malignancy grade astrocytomas and evaluation of prognostic significance. J. Neuropathol. Exp. Neurol.63(7), 700–707 (2004).
  • Pelloski CE, Ballman KV, Furth AF et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J. Clin. Oncol.25(16), 2288–2294 (2007).
  • Huang PH, Mukasa A, Bonavia R et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc. Natl Acad. Sci. USA104(31), 12867–12872 (2007).
  • Li L, Dutra A, Pak E et al. EGFRvIII expression and PTEN loss synergistically induce chromosomal instability and glial tumors. Neuro. Oncol.11(1), 9–21 (2009).
  • Bachoo RM, Maher EA, Ligon KL et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell1(3), 269–277 (2002).
  • Lee J, Kotliarova S, Kotliarov Y et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell9(5), 391–403 (2006).
  • Soeda A, Inagaki A, Oka N et al. Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells. J. Biol. Chem.283(16), 10958–10966 (2008).
  • Shir A, Ogris M, Wagner E, Levitzki A. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med.3(1), e6 (2006).
  • Zhu H, Acquaviva J, Ramachandran P et al. Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc. Natl Acad. Sci. USA106(8), 2712–2716 (2009).
  • Rich JN, Reardon DA, Peery T et al. Phase II trial of gefitinib in recurrent glioblastoma. J. Clin. Oncol.22(1), 133–142 (2004).
  • Prados MD, Lamborn KR, Chang S et al. Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neuro. Oncol.8(1), 67–78 (2006).
  • Prados MD, Chang SM, Butowski N et al. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J. Clin. Oncol.27(4), 579–584 (2009).
  • van den Bent MJ, Brandes AA, Rampling R et al. Randomized Phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J. Clin. Oncol.27(8), 1268–1274 (2009).
  • Lassman AB, Rossi MR, Raizer JJ et al. Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01–03 and 00–01. Clin. Cancer Res.11(21), 7841–7850 (2005).
  • Spector NL, Xia W, Burris H 3rd et al. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J. Clin. Oncol.23(11), 2502–2512 (2005).
  • Giannopoulou E, Dimitropoulos K, Argyriou AA, Koutras AK, Dimitrakopoulos F, Kalofonos HP. An in vitro study, evaluating the effect of sunitinib and/or lapatinib on two glioma cell lines. Invest. New Drugs (2009) (Epub ahead of print).
  • Traxler P, Allegrini PR, Brandt R et al. AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res.64(14), 4931–4941 (2004).
  • Goudar RK, Shi Q, Hjelmeland MD et al. Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol. Cancer Ther.4(1), 101–112 (2005).
  • Rich JN, Sathornsumetee S, Keir ST et al. ZD6474, a novel tyrosine kinase inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor, inhibits tumor growth of multiple nervous system tumors. Clin. Cancer Res.11(22), 8145–8157 (2005).
  • Sandstrom M, Johansson M, Bergstrom P, Bergenheim AT, Henriksson R. Effects of the VEGFR inhibitor ZD6474 in combination with radiotherapy and temozolomide in an orthotopic glioma model. J. Neurooncol.88(1), 1–9 (2008).
  • Yeh HJ, Silos-Santiago I, Wang YX, George RJ, Snider WD, Deuel TF. Developmental expression of the platelet-derived growth factor α-receptor gene in mammalian central nervous system. Proc. Natl Acad. Sci. USA90(5), 1952–1956 (1993).
  • Oumesmar BN, Vignais L, Baron-Van Evercooren A. Developmental expression of platelet-derived growth factor α-receptor in neurons and glial cells of the mouse CNS. J. Neurosci.17(1), 125–139 (1997).
  • Noble M, Murray K, Stroobant P, Waterfield MD, Riddle P. Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature333(6173), 560–562 (1988).
  • Hermanson M, Funa K, Hartman M et al. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res.52(11), 3213–3219 (1992).
  • Westermark B, Heldin CH, Nister M. Platelet-derived growth factor in human glioma. Glia15(3), 257–263 (1995).
  • Rao RD, James CD. Altered molecular pathways in gliomas: an overview of clinically relevant issues. Semin. Oncol.31(5), 595–604 (2004).
  • Fomchenko EI, Holland EC. Platelet-derived growth factor-mediated gliomagenesis and brain tumor recruitment. Neurosurg. Clin. N. Am.18(1), 39–58, viii (2007).
  • Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev.15(15), 1913–1925 (2001).
  • Holdhoff M, Kreuzer KA, Appelt C et al. Imatinib mesylate radiosensitizes human glioblastoma cells through inhibition of platelet-derived growth factor receptor. Blood Cells Mol. Dis.34(2), 181–185 (2005).
  • Wen PY, Yung WK, Lamborn KR et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium study 99–08. Clin. Cancer Res.12(16), 4899–4907 (2006).
  • Raymond E, Brandes AA, Dittrich C et al. Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J. Clin. Oncol.26(28), 4659–4665 (2008).
  • Roberts WG, Whalen PM, Soderstrom E et al. Antiangiogenic and antitumor activity of a selective PDGFR tyrosine kinase inhibitor, CP-673,451. Cancer Res.65(3), 957–966 (2005).
  • Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature359(6398), 845–848 (1992).
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat. Med.9(6), 669–676 (2003).
  • Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature367(6463), 576–579 (1994).
  • Schmidt NO, Westphal M, Hagel C et al. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int. J. Cancer84(1), 10–18 (1999).
  • Leon SP, Folkerth RD, Black PM. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer77(2), 362–372 (1996).
  • Sanai N, Tramontin AD, Quinones-Hinojosa A et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature427(6976), 740–744 (2004).
  • Quinones-Hinojosa A, Sanai N, Soriano-Navarro M et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J. Comp. Neurol.494(3), 415–434 (2006).
  • Gilbertson RJ, Rich JN. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat. Rev. Cancer7(10), 733–736 (2007).
  • Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res.67(8), 3560–3564 (2007).
  • Huang J, Soffer SZ, Kim ES et al. Vascular remodeling marks tumors that recur during chronic suppression of angiogenesis. Mol. Cancer Res.2(1), 36–42 (2004).
  • Batchelor TT, Sorensen AG, di Tomaso E et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell11(1), 83–95 (2007).
  • Stefanik DF, Rizkalla LR, Soi A, Goldblatt SA, Rizkalla WM. Acidic and basic fibroblast growth factors are present in glioblastoma multiforme. Cancer Res.51(20), 5760–5765 (1991).
  • Plate KH, Breier G, Farrell CL, Risau W. Platelet-derived growth factor receptor-β is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Lab. Invest.67(4), 529–534 (1992).
  • Guo P, Hu B, Gu W et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am. J. Pathol.162(4), 1083–1093 (2003).
  • Dunn IF, Heese O, Black PM. Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J. Neurooncol.50(1–2), 121–137 (2000).
  • Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL. Expression of hypoxia-inducible factor 1a in brain tumors: association with angiogenesis, invasion, and progression. Cancer88(11), 2606–2618 (2000).
  • Du R, Lu KV, Petritsch C et al. HIF1a induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell13(3), 206–220 (2008).
  • Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro. Oncol.7(2), 122–133 (2005).
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86(3), 353–364 (1996).
  • Tuettenberg J, Friedel C, Vajkoczy P. Angiogenesis in malignant glioma – a target for antitumor therapy? Crit. Rev. Oncol. Hematol.59(3), 181–193 (2006).
  • Holash J, Maisonpierre PC, Compton D et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science284(5422), 1994–1998 (1999).
  • Rubenstein JL, Kim J, Ozawa T et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia2(4), 306–314 (2000).
  • Dietrich J, Han R, Yang Y, Mayer-Proschel M, Noble M. CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J. Biol.5(7), 22 (2006).
  • Han R, Yang YM, Dietrich J, Luebke A, Mayer-Proschel M, Noble M. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J. Biol.7(4), 12 (2008).
  • Eyler CE, Foo WC, LaFiura KM, McLendon RE, Hjelmeland AB, Rich JN. Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells26(12), 3027–3036 (2008).
  • Galanis E, Buckner JC, Maurer MJ et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J. Clin. Oncol.23(23), 5294–5304 (2005).
  • Chang SM, Wen P, Cloughesy T et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest. New Drugs23(4), 357–361 (2005).
  • Kuhn JG, Chang SM, Wen PY et al. Pharmacokinetic and tumor distribution characteristics of temsirolimus in patients with recurrent malignant glioma. Clin. Cancer Res.13(24), 7401–7406 (2007).
  • Varnum-Finney B, Xu L, Brashem-Stein C et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med.6(11), 1278–1281 (2000).
  • Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat. Rev. Cancer3(10), 756–767 (2003).
  • D’Souza B, Miyamoto A, Weinmaster G. The many facets of Notch ligands. Oncogene27(38), 5148–5167 (2008).
  • Pierfelice TJ, Schreck KC, Eberhart CG, Gaiano N. Notch, neural stem cells, and brain tumors. Cold Spring Harb. Symp. Quant Biol.73, 367–375 (2008).
  • Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. Signalling downstream of activated mammalian Notch. Nature377(6547), 355–358 (1995).
  • Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J.18(8), 2196–2207 (1999).
  • Solecki DJ, Liu XL, Tomoda T, Fang Y, Hatten ME. Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron31(4), 557–568 (2001).
  • Stump G, Durrer A, Klein AL, Lutolf S, Suter U, Taylor V. Notch1 and its ligands δ-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mech. Dev.114(1–2), 153–159 (2002).
  • Gaiano N, Fishell G. The role of notch in promoting glial and neural stem cell fates. Annu. Rev. Neurosci.25, 471–490 (2002).
  • Hitoshi S, Seaberg RM, Koscik C et al. Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev.18(15), 1806–1811 (2004).
  • Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat. Neurosci.8(6), 709–715 (2005).
  • Androutsellis-Theotokis A, Leker RR, Soldner F et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature442(7104), 823–826 (2006).
  • Gaiano N, Nye JS, Fishell G. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron26(2), 395–404 (2000).
  • Tanigaki K, Nogaki F, Takahashi J, Tashiro K, Kurooka H, Honjo T. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron29(1), 45–55 (2001).
  • Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T. Notch1 is essential for postimplantation development in mice. Genes Dev.8(6), 707–719 (1994).
  • Xue Y, Gao X, Lindsell CE et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum. Mol. Genet.8(5), 723–730 (1999).
  • Krebs LT, Xue Y, Norton CR et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev.14(11), 1343–1352 (2000).
  • Hallahan AR, Pritchard JI, Hansen S et al. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res.64(21), 7794–7800 (2004).
  • Fan X, Mikolaenko I, Elhassan I et al. Notch1 and Notch2 have opposite effects on embryonal brain tumor growth. Cancer Res.64(21), 7787–7793 (2004).
  • Fan X, Matsui W, Khaki L et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res.66(15), 7445–7452 (2006).
  • Purow BW, Haque RM, Noel MW et al. Expression of Notch-1 and its ligands, δ-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res.65(6), 2353–2363 (2005).
  • Shih AH, Holland EC. Notch signaling enhances nestin expression in gliomas. Neoplasia8(12), 1072–1082 (2006).
  • Kanamori M, Kawaguchi T, Nigro JM et al. Contribution of Notch signaling activation to human glioblastoma multiforme. J. Neurosurg.106(3), 417–427 (2007).
  • Zhang XP, Zheng G, Zou L et al. Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol. Cell Biochem.307(1–2), 101–108 (2008).
  • Garber K. Notch emerges as new cancer drug target. J. Natl Cancer Inst.99(17), 1284–1285 (2007).
  • Wang L, Rahn JJ, Lun X et al. γ-secretase represents a therapeutic target for the treatment of invasive glioma mediated by the p75 neurotrophin receptor. PLoS Biol.6(11), e289 (2008).
  • LoRusso PM, Demuth T, Heath E et al. Phase I study of MK-0752, a Notch inhibitor, in patients with breast cancer and other solid tumors. In: Proceedings of the American Association for Cancer Research (AACR). Denver, CO, USA (2009) (Abstract 3605).
  • Machold R, Hayashi S, Rutlin M et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron39(6), 937–950 (2003).
  • Park Y, Rangel C, Reynolds MM et al.Drosophila perlecan modulates FGF and hedgehog signals to activate neural stem cell division. Dev. Biol.253(2), 247–257 (2003).
  • Lai K, Kaspar BK, Gage FH, Schaffer DV. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci.6(1), 21–27 (2003).
  • Palma V, Lim DA, Dahmane N et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development132(2), 335–344 (2005).
  • Cai C, Thorne J, Grabel L. Hedgehog serves as a mitogen and survival factor during embryonic stem cell neurogenesis. Stem Cells26(5), 1097–1108 (2008).
  • Han YG, Spassky N, Romaguera-Ros M et al. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat. Neurosci.11(3), 277–284 (2008).
  • Komada M, Saitsu H, Kinboshi M, Miura T, Shiota K, Ishibashi M. Hedgehog signaling is involved in development of the neocortex. Development135(16), 2717–2727 (2008).
  • Goodrich LV, Milenkovic L, Higgins KM, Scott MP. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science277(5329), 1109–1113 (1997).
  • Pomeroy SL, Tamayo P, Gaasenbeek M et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature415(6870), 436–442 (2002).
  • Dahmane N, Sanchez P, Gitton Y et al. The sonic hedgehog–Gli pathway regulates dorsal brain growth and tumorigenesis. Development128(24), 5201–5212 (2001).
  • Berman DM, Karhadkar SS, Hallahan AR et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science297(5586), 1559–1561 (2002).
  • Pascadi Magliano M, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat. Rev. Cancer3(12), 903–911 (2003).
  • Ruizi Altaba A, Sanchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat. Rev. Cancer2(5), 361–372 (2002).
  • Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG–GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol.17(2), 165–172 (2007).
  • Bar EE, Chaudhry A, Lin A et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells25(10), 2524–2533 (2007).
  • Rudin CM, Hann CL, Laterra J et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med.361(12), 1173–1178 (2009).
  • Brivanlou AH, Darnell JE Jr. Signal transduction and the control of gene expression. Science295(5556), 813–818 (2002).
  • Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and β-catenin signalling: diseases and therapies. Nat. Rev. Genet.5(9), 691–701 (2004).
  • Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature434(7035), 843–850 (2005).
  • Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature389(6654), 966–970 (1997).
  • Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science297(5580), 365–369 (2002).
  • Zechner D, Fujita Y, Hulsken J et al. β-catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol.258(2), 406–418 (2003).
  • Wexler EM, Paucer A, Kornblum HI, Palmer TD, Geschwind DH. Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells27(5), 1130–1141 (2009).
  • Lee HY, Kleber M, Hari L et al. Instructive role of Wnt/β-catenin in sensory fate specification in neural crest stem cells. Science303(5660), 1020–1023 (2004).
  • Lie DC, Colamarino SA, Song HJ et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature437(7063), 1370–1375 (2005).
  • Gulacsi AA, Anderson SA. β-catenin-mediated Wnt signaling regulates neurogenesis in the ventral telencephalon. Nat. Neurosci.11(12), 1383–1391 (2008).
  • Zurawel RH, Chiappa SA, Allen C, Raffel C. Sporadic medulloblastomas contain oncogenic β-catenin mutations. Cancer Res.58(5), 896–899 (1998).
  • Yokota N, Nishizawa S, Ohta S et al. Role of Wnt pathway in medulloblastoma oncogenesis. Int. J. Cancer101(2), 198–201 (2002).
  • Marino S. Medulloblastoma: developmental mechanisms out of control. Trends Mol. Med.11(1), 17–22 (2005).
  • Roth W, Wild-Bode C, Platten M et al. Secreted frizzled-related proteins inhibit motility and promote growth of human malignant glioma cells. Oncogene19(37), 4210–4220 (2000).
  • Zhang Z, Schittenhelm J, Guo K et al. Upregulation of frizzled 9 in astrocytomas. Neuropathol. Appl. Neurobiol.32(6), 615–624 (2006).
  • Pu P, Zhang Z, Kang C et al. Downregulation of Wnt2 and β-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther.16(4), 351–361 (2009).
  • Groszer M, Erickson R, Scripture-Adams DD et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science294(5549), 2186–2189 (2001).
  • Li L, Liu F, Salmonsen RA et al. PTEN in neural precursor cells: regulation of migration, apoptosis, and proliferation. Mol. Cell. Neurosci.20(1), 21–29 (2002).
  • Baker SJ, McKinnon PJ. Tumour-suppressor function in the nervous system. Nat. Rev. Cancer4(3), 184–196 (2004).
  • Koul D. PTEN signaling pathways in glioblastoma. Cancer Biol. Ther.7(9), 1321–1325 (2008).
  • Mellinghoff IK, Cloughesy TF, Mischel PS. PTEN-mediated resistance to epidermal growth factor receptor kinase inhibitors. Clin. Cancer Res.13(2 Pt 1), 378–381 (2007).
  • Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature397(6715), 164–168 (1999).
  • Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell118(4), 409–418 (2004).
  • Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev.19(12), 1432–1437 (2005).
  • Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature425(6961), 962–967 (2003).
  • Dirks P. Bmi1 and cell of origin determinants of brain tumor phenotype. Cancer Cell12(4), 295–297 (2007).
  • Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature423(6937), 255–260 (2003).
  • Leung C, Lingbeek M, Shakhova O et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature428(6980), 337–341 (2004).
  • Dukers DF, van Galen JC, Giroth C et al. Unique polycomb gene expression pattern in Hodgkin’s lymphoma and Hodgkin’s lymphoma-derived cell lines. Am. J. Pathol.164(3), 873–881 (2004).
  • Bruggeman SW, Hulsman D, Tanger E et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell12(4), 328–341 (2007).
  • Godlewski J, Newton HB, Chiocca EA, Lawler SE. MicroRNAs and glioblastoma; the stem cell connection. Cell Death Differ. (2009).
  • Lawler S, Chiocca EA. Emerging functions of microRNAs in glioblastoma. J. Neurooncol.92(3), 297–306 (2009).
  • Pang JC, Kwok WK, Chen Z, Ng HK. Oncogenic role of microRNAs in brain tumors. Acta Neuropathol.117(6), 599–611 (2009).
  • Silber J, Lim DA, Petritsch C et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med.6, 14 (2008).
  • Godlewski J, Nowicki MO, Bronisz A et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res.68(22), 9125–9130 (2008).
  • Desano JT, Xu L. MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J.11(4), 682–692 (2009).
  • Li Y, Guessous F, Zhang Y et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res.69(19), 7569–7576 (2009).
  • Petri A, Lindow M, Kauppinen S. MicroRNA silencing in primates: towards development of novel therapeutics. Cancer Res.69(2), 393–395 (2009).
  • Pillay V, Allaf L, Wilding AL et al. The plasticity of oncogene addiction: implications for targeted therapies directed to receptor tyrosine kinases. Neoplasia11(5), 448–458 (2009).
  • Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science321(5897), 1807–1812 (2008).
  • Monje ML, Mizumatsu S, Fike JR, Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat. Med.8(9), 955–962 (2002).
  • Dietrich J, Monje M, Wefel J, Meyers C. Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. Oncologist13(12), 1285–1295 (2008).
  • Loges S, Mazzone M, Hohensinner P, Carmeliet P. Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell15(3), 167–170 (2009).
  • Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell15(3), 232–239 (2009).
  • Paez-Ribes M, Allen E, Hudock J et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell15(3), 220–231 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.