122
Views
11
CrossRef citations to date
0
Altmetric
Review

PET and PET–CT in radiation treatment planning for lung cancer

, , &
Pages 571-584 | Published online: 10 Jan 2014

References

  • International Commission on Radiation Units and Measurements. ICRU Report 50: Prescribing, Recording, and Reporting Photon Beam Therapy. International Commission in Radiation Unit and Measurements, MD, USA (1993).
  • International Commission on Radiation Units and Measurements. ICRU Report 62: Prescribing, Recording, and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). International Commission in Radiation Unit and Measurements, MD, USA (1999).
  • Mell LK, Pawlicki T, Jiang SB, Mundt AJ. Image-guided radiation therapy. In: Principles and Practice of Radiation Oncology. (Fifth Edition). Halperin EC, Perez CA, Brady LW (Eds). Lippincott Williams & Wilkins, PA, USA, 263–298 (2008).
  • Cazzaniga LF, Marinoni MA, Bossi A et al. Interphysician variability in defining the planning target volume in the irradiation of prostate and seminal vescicles. Radiother. Oncol.47, 293–296 (1998).
  • Fiorino C, Reni M, Bolognesi A, Cattaneo G, Calandrino R. Intra- and inter-observer variability in contouring prostate and seminal vescicles: implications for conformal treatment planning. Radiother. Oncol.47, 285–292 (1998).
  • Senan S, Van Sörnsen de Koste J, Samson M et al. Evalutation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer. Radiother. Oncol.53, 247–255 (1999).
  • Hurkmans CW, Borger JH, Pieters BR, Russell NS, Jansen EP, Mijnheer BJ. Variability in target volume delineation on CT scans of the breast. Int. J. Radiat. Oncol. Biol. Phys.50, 1366–1372 (2001).
  • van de Steene J, Linthout N, De Mey J et al. Definition of gross tumor volume in lung cancer: inter-observer variability. Radiother. Oncol.62, 37–49 (2002).
  • Weiss E, Richter S, Krauss T et al. Conformal radiotherapy planning of cervix carcinoma: differences in the delineation of the clinical target volume. A comparison between gynaecologic and radiation oncologists. Radiother. Oncol.67, 87–95 (2003).
  • Court LE, Dong L, Taylor N et al. Evaluation of a contour-alignment technique for CT-guided prostate radiotherapy: an intra- and interobserver study. Int. J. Radiat. Oncol. Biol. Phys.59, 412–418 (2004).
  • Geets X, Daisne JF, Arcangeli S et al. Inter-observer variability in the delineation of pharyngo–laryngeal tumor, parotid glands and cervical spinal cord: comparison between CT-scan and MRI. Radiother. Oncol.77, 25–31 (2005).
  • Riegel AC, Berson AM, Destian S et al. Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion. Int. J. Radiat. Oncol. Biol. Phys.65, 726–732 (2006).
  • Saarnak AE, Boersma M; van Bunningen BN, Wolterink R, Steggerda M. Interobserver variation in delineation of bladder and rectum contours for brachytherapy of cervical cancer. Radiother. Oncol. 57, 37–42 (2000).
  • Nestle U, Kremp S, Grosu AL. Practical integration of [18F]-FDG-PET and PET–CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother. Oncol.81, 209–225 (2006).
  • Black QC, Grills IS, Kestin LL et al. Defining a radiotherapy target with positron emission tomography. Int. J. Radiat. Oncol. Biol. Phys.60, 1272–1282 (2004).
  • Gutman F, Gardin I, Delahaye N et al. Optimisation of the OS-EM algorithm and comparison with FBP for image reconstruction on a dual-head camera: a phantom and a clinical 18F-FDG study. Eur. J. Nucl. Med. Mol. Imaging30, 1510–1519 (2003).
  • Chiang S. Principles of PET–CT scanning. In: PET–CT in Radiotherapy Treatment Planning. Paulino AC, Teh BS (Eds). Saunders Elsevier, PA, USA, 19–31(2008).
  • Saleem A. Potential of PET in oncology and radiotherapy. Br. J. Radiol.28(Suppl.), 6–16 (2005).
  • Ling CC, Humm J, Larson S et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys.47, 551–560 (2000).
  • Gillham C, Zips D, Pönish F et al. Additional PET/CT in week 5–6 of radiotherapy for patients with stage III non-small cell lung cancer as a means of dose escalation planning? Radiother. Oncol.88, 335–341 (2008).
  • Feng M, Kong FM, Gross M, Fernando S, Hayman JA, Ten Haken RK. Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int. J. Radiat. Oncol. Biol. Phys.73, 1228–1234 (2009).
  • Grosu AL, Piert M, Molls M. Experience of PET for target localisation in radiation oncology. Br. J. Radiol.28(Suppl.), 18–32 (2005).
  • Delbeke D, Coleman RE, Guiberteau MJ et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0*. J. Nucl. Med.47, 885–895 (2006).
  • Bombardieri E, Aktolun C, Baum RP et al. FDG-PET. Procedure guidelines for tumour imaging. Eur. J. Nucl. Mol. Imaging.30, BP115–BP124 (2003).
  • Hellwig D, Ukena D, Paulsen F, Bamberg M, Kirsch CM. Meta-analysis of the efficacy of positron emission tomography with F-18-fluorodeoxyglucose in lung tumors. Basis for discussion of the German Consensus Conference on PET in Oncology 2000. Pneumologie55, 367–377 (2001).
  • Khan MA, Combs CS, Brunt EM et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J. Hepatol.32, 792–797 (2000).
  • Shvarts O, Han KR, Seltzer M, Pantuck AJ, Belldegrun AS. Positron emission tomography in urologic oncology. Cancer Control9, 335–342 (2002).
  • Saleem A, Charnley N, Price P. Clinical molecular imaging with positron emission tomography. Eur. J. Cancer.42, 1720–1727 (2006).
  • MacManus M, Nestle U, Rosenzweig KE et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother. Oncol.91, 85–94 (2009).
  • Palumbo B. Brain tumor recurrence: brain single-photon emission computerized tomography, PET and proton magnetic resonance spectroscopy. Nucl. Med. Commun.29, 730–735 (2008).
  • Grosu AL, Weber WA, Riedel E et al. l-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.63, 64–74 (2005).
  • Grosu AL, Weber WA, Astner ST et al.11C-Methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.66, 339–344 (2006).
  • Schober O, Duden C, Meyer GJ, Muller JA, Hundeshagen H. Non selective transport of [11C-methyl]-L- and D-methionine into a malignant glioma. Eur. J. Nucl. Med.13, 103–105 (1987).
  • Milker-Zabel S, Zabel-Du Bois A, Henze M et al. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI and [68Ga]-DOTATOC-PET. Int. J. Radiat. Oncol. Biol. Phys.65, 222–227 (2006).
  • Padhani A. PET imaging of tumor hypoxia. Cancer Imaging6, S117–S121 (2006).
  • Eschmann S-M, Paulsen F, Reimold M et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J. Nucl. Med.46, 253–260 (2005).
  • Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ. Evaluation of 64-Cu-ATMS in vitro and in vivo in a hypoxic tumor model. J. Nucl. Med.40, 177–183 (1999).
  • Chao KS, Bosh WR, Mutic S et al. A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.49, 1171–1182 (2001).
  • Dehdashti F, Mintum MA, Lewis SJ et al.In vivo assessment of tumour hypoxia in lung cancer with 60Cu-ATSM. Eur. J. Nucl. Med. Mol. Imaging30, 844–850 (2003).
  • Grills IS, Yan D, Black QC et al. Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys.67, 709–719 (2007).
  • Grgic A, Nestle U, Schaefer-Schuler A et al. FDG-PET-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning – an intraindividual comparison. Int. J. Radiat. Oncol. Biol. Phys.73, 103–111 (2009).
  • Zitova B, Flusser J. Image registration methods: a survey. Image and Vision Computing21, 977–1000 (2003).
  • Vanuytsel LJ, Vansteenkiste JF, Stroobants SG et al. The impact of 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother. Oncol.55, 317–324 (2000).
  • Giraud P, Grahek D, Montravers F et al. CT and 18F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int. J. Radiat. Oncol. Biol. Phys.49, 1249–1257 (2001).
  • Erdi YE, Rosenzweig K, Erdi AK et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother. Oncol.62, 51–60 (2002).
  • Mah K, Caldwell CB, Ung YC et al. The impact of 18FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int. J. Radiat. Oncol. Biol. Phys.52, 339–350 (2002).
  • Bradley J, Thorstad WL, Mutic S et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys.59, 78–86 (2004).
  • Vogel WV, Schinagl DA, Van Dalen JA, Kaanders JH, Oyen WJ. Validated image fusion of dedicated PET and CT for external beam radiation therapy in the head and neck area. Q. J. Nucl. Med. Mol. Imaging52, 74–83 (2008).
  • Beyer T, Townsend DW, Brun T et al. A combined PET/CT scanner for clinical oncology. J. Nucl. Med.41, 1369–1379 (2000).
  • Senan S, De Ruysscher D. Critical review of PET–CT for radiotherapy planning in lung cancer. Crit. Rev. Oncol. Hematol.56, 345–351 (2005).
  • Scarfone C, Lavely WC, Cmelak AJ et al. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging. J. Nucl. Med.45, 543–552 (2004).
  • Macapinlac HA. Clinical applications of positron emission tomography/computed tomography treatment planning. Semin. Nucl. Med.38, 137–140 (2008).
  • Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer57, 125–134 (2007).
  • Chatziioannou A. VP-PET: a new imaging modality? J. Nucl. Med.49, 345–346 (2008).
  • Kiffer JD, Berlangieri SU, Scott AM et al. The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer19, 167–177 (1998).
  • Nestle U, Hellwig D, Schmidt S et al. 2-Deoxy-2-[18F]fluoro-D-glucose positron emission tomography in target volume definition for radiotherapy of patients with non-small-cell lung cancer. Mol. Imaging Biol.4, 257–263 (2002).
  • Nestle U, Walter K, Schmidt S et al.18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int. J. Radiat. Oncol. Biol. Phys.44, 593–597 (1999).
  • Strauss LG, Conti PS. The applications of PET in clinical oncology. J. Nucl. Med.32, 623–648 (1991).
  • Paulino AC, Johnstone PAS. FDG-PET radiotherapy treatment planning: Pandora’s box? Int. J. Radiat. Oncol. Biol. Phys.59, 4–5 (2004).
  • Ashamalla H, Rafla S, Parikh K et al. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int. J. Radiat. Oncol. Biol. Phys.63, 1016–1023 (2005).
  • Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J. Nucl. Med.45, 1519–1527 (2004).
  • Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J. Nucl. Med.46, 424–428 (2005).
  • Huang SC. Anatomy of SUV. Standardized uptake value. Nucl. Med. Biol.27, 643–646 (2000).
  • Vansteenkiste JF, Stroobants SG, Dupont PJ et al. Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: an analyses of 125 cases. Leuven Lung Cancer Group. J. Clin. Oncol.17, 3201–3206 (1999).
  • Yaremko B, Riauka T, Robinson D et al. Thresholding in PET images of static and moving targets. Phys. Med. Biol.50, 5969–5982 (2005).
  • Ciernik IF, Dizendorf E, Baumert BG et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int. J. Radiat. Oncol. Biol. Phys.57, 853–863 (2003).
  • Caldwell CB, Mah K, Skinner M, Danjoux CE. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int. J. Radiat. Oncol. Biol. Phys.55, 1381–1393 (2003).
  • Caldwell CB, Mah K, Ung YC et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int. J. Radiat. Oncol. Biol. Phys.51, 923–931 (2001).
  • Brianzoni E, Rossi G, Ancidei S et al. Radiotherapy planning: PET/TC scanner performances in the definition of gross tumour volume and clinical target volume. Eur. J. Nucl. Med. Mol. Imaging32, 1392–1399 (2005).
  • Biehl KJ, Kong FM, Dehdashti F et al.18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J. Nucl. Med.47, 1808–1812 (2006).
  • Erdi YE, Mawlawi O, Larson SM et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer80(Suppl.), 2505–2509 (1997).
  • Geets X, Lee JA, Bol A, Lonneux M, Grégoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur. J. Nucl. Med. Mol. Imaging34, 1427–1438 (2007).
  • Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother. Oncol.69, 247–250 (2003).
  • MacManus M, Hicks RJ. The use of positron emission tomography (PET) in the staging/evaluation, treatment, and follow-up of patients with lung cancer: a critical review. Int. J. Radiat. Oncol. Biol. Phys.72, 1298–1306 (2008).
  • Hong R, Halama J, Bova D, Sethi A, Emami B. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. Int. J. Radiat. Oncol. Biol. Phys.67, 720–726 (2007).
  • van Baardwijk A, Baumert BG, Bosmans G et al. The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat. Rev.32, 245–260 (2006).
  • Nestle U, Schaefer-Schuler A, Kremp S et al. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging34, 453–462 (2007).
  • Nestle U, Kremp S, Schaefer-Schuler A et al. Comparison of different methods for delineation of 18F FDG-PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J. Nucl. Med.46, 1342–1348 (2005).
  • Stroom J, Blaauwgeers H, Van Baardwijk A et al. Feasibility of pathology-correlated lung imaging for accurate target definition of lung tumors. Int. J. Radiat. Oncol. Biol. Phys.69, 267–275 (2007).
  • Gondi V, Bradley K, Mehta M et al. Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys.67, 187–195 (2007).
  • Erdi YE, Nehmeh SA, Pan T et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J. Nucl. Med.45, 1287–1292 (2004).
  • Senan S, De Ruysscher D, Giraud P et al. Literature-based recommendations for treatment planning and execution in high-dose radiotherapy for lung cancer. Radiother. Oncol.71, 139–146 (2004).
  • Nehmeh SA, Erdi YE, Rosenzweig KE et al. Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated dynamic PET: methodology and comparison with respiratory gated PET. J. Nucl. Med.44, 1644–1648 (2003).
  • Boucher L, Rodrigue S, Lecomte R, Bénard F. Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J. Nucl. Med.45, 214–219 (2004).
  • Vansteenkiste J, Fischer BM, Dooms C, Mortensen J. Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review. Lancet Oncol.5, 531–540 (2004).
  • MacManus MP, Hicks R, Matthews JP et al. High rate of detection of unsuspected distant metastases by PET in apparent stage III non-small-cell lung cancer: implications for radical radiation therapy. Int. J. Radiat. Oncol. Biol. Phys50, 287–93 (2001).
  • MacManus MP, Hicks RJ, Ball DL et al. F-18 Fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with non small cell lung carcinoma. Powerful correlation with survival and high impact on treatment. Cancer92, 886–895 (2001).
  • Lardinois D, Weder W, Hany TF et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N. Engl. J. Med.348, 2500–2507 (2003).
  • Paulsen F, Scheiderbauer J, Eschmann SM et al. First experiences of radiation treatment planning with PET/CT. Strahlenther. Onkol.182, 369–375 (2006).
  • Messa C, Di Muzio N, Picchio M, Gilardi MC, Bettinardi V, Fazio F. PET/CT and radiotherapy. Q. J. Nucl. Med. Mol. Imaging50, 4–14 (2006).
  • Gabriele P, Malinverni G, Moroni GL et al. The impact of 18F-deoxyglucose positron emission tomography on tumor staging, treatment strategy and treatment planning for radiotherapy in a department of radiation oncology. Tumori90, 579–585 (2004).
  • Kalff V, Hicks RJ, MacManus MP et al. Clinical impact of (18)F fluorodeoxyglucose positron emission tomography in patients with non-small-cell lung cancer: a prospective study. J. Clin. Oncol.19, 111–118 (2001).
  • MacManus MP, Wong K, Hicks RJ, Matthews JP, Wirth A, Ball DL. Early mortality after radical radiotherapy for non-small-cell lung cancer: comparison of PET-staged and conventionally staged cohorts treated at a large tertiary referral center. Int. J. Radiat. Oncol. Biol. Phys.52, 351–361 (2002).
  • Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG-PET literature. J. Nucl. Med.42, 1S–93S (2001).
  • Grégoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-based treatment planning in radiotherapy: a new standard? J. Nucl. Med.48, 68S–77S (2007).
  • Gupta NC, Graeber GM, Bishop HA. Comparative efficacy of positron emission tomography with fluorodeoxyglucose in evaluation of small (<1 cm), intermediate (1 to 3 cm), and large (>3 cm) lymph node lesions. Chest117, 773–778 (2000).
  • Cerfolio RJ, Ojha B, Bryant AS, Raghuveer V, Mountz JM, Bartolucci AA. The accuracy of integrated PET–CT compared with dedicated PET alone for the staging of patients with nonsmall cell lung cancer. Ann. Thorac. Surg.78, 1017–1023 (2004).
  • Yasufuku K, Nakajima T, Motoori K et al. Comparison of endobronchial ultrasound, positron emission tomography, and CT for lymph node staging of lung cancer. Chest130, 710–718 (2006).
  • Roberts PF, Follette DM, von Haag D et al. Factors associated with false-positive staging of lung cancer by positron emission tomography. Ann. Thorac. Surg.70, 1154–1159 (2000).
  • Graeter TP, Hellwig D, Hoffmann K, Ukena D, Kirsch CM, Schäfers HJ. Mediastinal lymph node staging in suspected lung cancer: comparison of positron emission tomography with F-18-fluorodeoxyglucose and mediastinoscopy. Ann. Thorac. Surg.75, 231–235 (2003).
  • Baum RP, Hellwig D, Mezzetti M. Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer Q. J. Nucl. Med. Mol. Imaging48, 119–142 (2004).
  • Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL. Metastases from non-small-cell lung cancer: mediastinal staging in the 1990s-meta-analytic comparison of PET and CT. Radiology213, 530–536 (1999).
  • Hellwig D, Gröschel A, Rentz K, Sybrecht GW, Kirsch CM, Ukena D. Accuracy of positron emission tomography with fluorine-18-fluoro-deoxyglucose. Pneumologie55, 363–366 (2001).
  • Vansteenkiste JF, Stroobants SG, Dupont PJ et al. FDG-PET scan in potentially operable non-small cell lung cancer: do anatometabolic PET–CT fusion images improve the localisation of regional lymph node metastases? Eur. J. Nucl. Med.25, 1495–1501 (1998).
  • Faria SL, Menard S, Devic S et al. Impact of FDG-PET/CT on radiotherapy volume delineation in non-small-cell lung cancer and correlation of imaging stage with pathologic findings. Int. J. Radiat. Oncol. Biol. Phys.70, 1035–1038 (2008).
  • Reed CE, Harpole DH, Posther KE et al. Results of the American College of Surgeons Oncology Group Z0050 trial: the utility of positron emission tomography in staging potentially operable non-small cell lung cancer. J. Thorac. Cardiovasc. Surg.126, 1943–1951 (2003).
  • Videtic GMM, Rice TW, Murthy S et al. Utility of positron emission tomography compared with mediastinoscopy for delineating involved lymph nodes in stage III lung cancer: insights for radiotherapy planning from a surgical cohort. Int.J. Radiat. Oncol. Biol. Phys.72, 702–706 (2008).
  • Annema JT, Hoekstra OS, Smit EF, Veselic M, Versteegh MI, Rabe KF. Towards a minimally invasive staging strategy in NSCLC: analysis of PET positive mediastinal lesions by EUS-FNA. Lung Cancer44, 53–60 (2004).
  • Yuan S, Sun X, Li M et al. A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage III non small cell lung cancer. Am. J. Clin. Oncol.30, 239–244 (2007).
  • Fox JL, Rengan R, O’Meara W et al. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int. J. Radiat. Oncol. Biol. Phys.62, 70–75 (2005).
  • Bakheet SM, Saleem M, Powel J, Al-Amro A, Larsson SG, Mahassin Z. F-18 fluorodeoxyglucose chest uptake in lung inflammation and infection. Clin. Nucl. Med.25, 273–278 (2000).
  • Steenbakkers RJHM, Duppen JC, Fitton I et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int. J. Radiat. Oncol. Biol. Phys.64, 435–448 (2006).
  • Fitton I, Steenbakkers RJ, Gilhuijs K et al. Impact of anatomical location on value of CT–PET co-registration for delineation of lung tumors. Int. J. Radiat. Oncol. Biol. Phys.70, 1403–1407 (2008).
  • Deniaud-Alexandre E, Touboul E, Lerouge D et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys.63, 1432–1441 (2005).
  • van Der Wel A, Nusten S, Hochstenbag M et al. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2–N3M0 non-small-cell lung cancer: a modelling study. Int. J. Radiat. Oncol. Biol. Phys.61, 649–655 (2005).
  • De Ruysscher D, Wanders S, Minken A et al. Effects of radiotherapy planning with a dedicated combined PET–CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother. Oncol.77, 5–10 (2005).
  • De Ruysscher D, Wanders S, van Haren E et al. Selective mediastinal node irradiation based on FDG-PEET scan data in patients with non-small-cell lung cancer: a prospective clinical study. Int. J. Radiat. Oncol. Biol. Phys.62, 988–994 (2005).
  • Bradley JD, Dehdashti F, Mintun A, Govindan R, Trinkaus K, Siegel BA. Positron emission tomography in limited-stage small-cell lung cancer: a prospective study. J. Clin. Oncol.22, 3248–3254 (2004).
  • Chin R, McCain TW, Miller AA et al. Whole body FDG-PET for the evaluation and staging of small-cell lung cancer: a preliminary study. Lung Cancer37, 1–6 (2002).
  • Shen YY, Shiau YC, Wang JJ, Ho ST, Kao CH. Whole-body 18F-2-deoxyglucose positron emission tomography in primary staging small cell lung cancer. Anticancer Res.22, 1257–64 (2002).
  • Fischer BM, Mortensen J, Langer SW et al. A prospective study of PET/CT in initial staging of small cell lung cancer: comparison with CT, bone scintigraphy and bone marrow analysis. Ann. Oncol.18, 338–345 (2007).
  • Brink I, Schumacher T, Mix M et al. Impact of [18F]FDG-PET on the primary staging of small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging31, 1614–1620 (2004).
  • Niho S, Fujii H, Murakami K et al. Detection of unsuspected distant metastases and/or regional nodes by FDG-PET [corrected] scan in apparent limited-disease small-cell lung cancer. Lung Cancer57, 328–333 (2007).
  • Kamel EM, Zwahlen D, Wyss MT, Stumpe KD, von Schulthess GK, Steinert HC. Whole-body 18F-FDG PET improves the management of patients with small cell lung cancer. J. Nucl. Med.44, 1911–1917 (2003).
  • van Loon J, Offermann C, Bosmans G et al.18FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: a planning study. Radiother. Oncol.87, 49–54 (2008).
  • Wolthaus JW, van Herk M, Muller SH et al. Fusion of respiration–correlated PET and CT scans: correlated lung tumour motion in anatomical and functional scans. Phys. Med. Biol.50, 1569–1583 (2005).
  • Pieterman R, Willemsen A, Appel M et al. Visualisation and assessment of the protein synthesis rate of lung cancer using carbon-11 tyrosine and positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging29, 243–247 (2002).
  • Hara T, Kosaka N, Suzuki T, Kudo K, Niino H. Uptake rates of 18F-fluorodeoxyglucose and 11C-choline in lung cancer and pulmonary tuberculosis: a positron emission tomography study. Chest124, 893–901 (2003).
  • Gugiatti A, Grimaldi A, Rossetti C et al. Economic analyses on the use of positron emission tomography for the work-up of solitary pulmonary nodules and for staging patients with non-small-cell-lung-cancer in Italy. Q. J. Nucl. Med. Mol. Imaging48, 49–61 (2004).
  • Yap KK, Yap KS, Byrne AJ et al. Positron emission tomography with selected mediastinoscopy compared to routine mediastinoscopy offers cost and clinical outcome benefits for pre-operative staging of non-small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging32, 1033–1040 (2005).
  • Lejeune C, Al Zahouri K, Woronoff-Lemsi MC et al. Use of a decision analysis model to assess the medicoeconomic implications of FDG PET imaging in diagnosing a solitary pulmonary nodule. Eur. J. Health Econ.6, 203–214 (2005).
  • Lucignani G. PET–MRI synergy in molecular, functional and anatomical cancer imaging. Eur. J. Nucl. Med. Mol. Imaging35, 1550–1553 (2008).

Website

  • National Comprehensive Cancer Network. Guidelines for treatment of non small cell lung cancer www.nccn.org (Accessed July 2009)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.