393
Views
19
CrossRef citations to date
0
Altmetric
Review

Animal models of osteosarcoma

Pages 1327-1338 | Published online: 10 Jan 2014

References

  • McKenna RJ, Schwinn CP, Soong KY, Higinbotham NL. Osteogenic sarcoma arising in Paget’s disease. Cancer17, 42–66 (1964).
  • Sissons HA. The WHO classification of bone tumors. Recent Results Cancer Res. (54), 104–108 (1976).
  • Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. Am. J. Clin. Pathol.125(4), 555–581 (2006).
  • Goorin AM, Abelson HT, Frei E 3rd. Osteosarcoma: fifteen years later. N. Engl. J. Med.313(26), 1637–1643 (1985).
  • Fine G, Stout AP. Osteogenic sarcoma of the extraskeletal soft tissues. Cancer9(5), 1027–1043 (1956).
  • Kauffman SL, Stout AP. Extraskeletal osteogenic sarcomas and chondrosarcomas in children. Cancer16, 432–439 (1963).
  • Ottaviani G, Jaffe N. The etiology of osteosarcoma. Cancer Treat. Res.152, 15–32 (2010).
  • Longhi A, Pasini A, Cicognani A et al. Height as a risk factor for osteosarcoma. J. Pediatr. Hematol. Oncol.27(6), 314–318 (2005).
  • Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat. Res.152, 3–13 (2010).
  • Tallroth K, Makai F, Musumeci R. Lymphography in bone and soft tissue sarcomas. Experiences from three institutions. Tumori66(6), 721–728 (1980).
  • Bruland OS, Hoifodt H, Saeter G, Smeland S, Fodstad O. Hematogenous micrometastases in osteosarcoma patients. Clin. Cancer Res.11(13), 4666–4673 (2005).
  • Makai F, Belan A, Malek P. Lymphatic metastases of bone tumors. Lymphology4(3), 109–115 (1971).
  • Bacci G, Picci P, Ferrari S et al. Neoadjuvant chemotherapy for nonmetastatic osteosarcoma of the extremities: the recent experience at the Rizzoli Institute. Cancer Treat. Res.62, 299–308 (1993).
  • Ferrari S, Palmerini E. Adjuvant and neoadjuvant combination chemotherapy for osteogenic sarcoma. Curr. Opin. Oncol.19(4), 341–346 (2007).
  • Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist9(4), 422–441 (2004).
  • Chou AJ, Kleinerman ES, Krailo MD et al. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Cancer115(22), 5339–5348 (2009).
  • Meyers PA, Schwartz CL, Krailo M et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J. Clin. Oncol.23(9), 2004–2011 (2005).
  • Hansen MF. Molecular genetic considerations in osteosarcoma. Clin. Orthop. Relat. Res. (270), 237–246 (1991).
  • Malkin D, Li FP, Strong LC et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science250(4985), 1233–1238 (1990).
  • Miller CW, Aslo A, Won A et al. Alterations of the p53, Rband MDM2 genes in osteosarcoma. J. Cancer Res. Clin. Oncol.122(9), 559–565 (1996).
  • Gurney JG, Severson RK, Davis S, Robison LL. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer75(8), 2186–2195 (1995).
  • Wadayama B, Toguchida J, Shimizu T et al. Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res.54(11), 3042–3048 (1994).
  • Hansen MF, Koufos A, Gallie BL et al. Osteosarcoma and retinoblastoma: a shared chromosomal mechanism revealing recessive predisposition. Proc. Natl Acad. Sci. USA82(18), 6216–6220 (1985).
  • Puranam KL, Kennington E, Sait SN et al. Chromosomal localization of the gene encoding the human DNA helicase RECQL and its mouse homologue. Genomics26(3), 595–598 (1995).
  • Watt PM, Hickson ID. Failure to unwind causes cancer. Genome stability. Curr. Biol.6(3), 265–267 (1996).
  • Mohaghegh P, Hickson ID. DNA helicase deficiencies associated with cancer predisposition and premature ageing disorders. Hum. Mol. Genet.10(7), 741–746 (2001).
  • Wang LL, Gannavarapu A, Kozinetz CA et al. Association between osteosarcoma and deleterious mutations in the RECQL4gene in Rothmund–Thomson syndrome. J. Natl Cancer Inst.95(9), 669–674 (2003).
  • Chun R, de Lorimier LP. Update on the biology and management of canine osteosarcoma. Vet. Clin. North Am. Small Anim. Pract.33(3), 491–516 (2003).
  • Hadjipavlou A, Lander P, Srolovitz H, Enker IP. Malignant transformation in Paget disease of bone. Cancer70(12), 2802–2808 (1992).
  • Edeiken J, DePalma AF, Hodes PJ. Paget’s disease: osteitis deformans. Clin. Orthop. Relat. Res.46, 141–153 (1966).
  • Tucker MA, D’Angio GJ, Boice JD Jr et al. Bone sarcomas linked to radiotherapy and chemotherapy in children. N. Engl. J. Med.317(10), 588–593 (1987).
  • Steeves RA, Bataini JP. Neoplasms induced by megavoltage radiation in the head and neck region. Cancer47(7), 1770–1774 (1981).
  • Gillette SM, Gillette EL, Powers BE, Withrow SJ. Radiation-induced osteosarcoma in dogs after external beam or intraoperative radiation therapy. Cancer Res.50(1), 54–57 (1990).
  • Berman SD, Calo E, Landman AS et al. Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc. Natl Acad. Sci. USA105(33), 11851–11856 (2008).
  • Walkley CR, Qudsi R, Sankaran VG et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev.22(12), 1662–1676 (2008).
  • Cameron MD, Schmidt EE, Kerkvliet N et al. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res.60(9), 2541–2546 (2000).
  • Koop S, MacDonald IC, Luzzi K et al. Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res.55(12), 2520–2523 (1995).
  • McAllister RM, Gardner MB, Greene AE et al. Cultivation in vitro of cells derived from a human osteosarcoma. Cancer27(2), 397–402 (1971).
  • McAllister RM, Nelson-Rees WA, Peer M et al. Childhood sarcomas and lymphomas. Characterization of new cell lines and search for type-C virus. Cancer36(5), 1804–1814 (1975).
  • Luu HH, Kang Q, Park JK et al. An orthotopic model of human osteosarcoma growth and spontaneous pulmonary metastasis. Clin. Exp. Metastasis22(4), 319–329 (2005).
  • Berlin O, Samid D, Donthineni-Rao R et al. Development of a novel spontaneous metastasis model of human osteosarcoma transplanted orthotopically into bone of athymic mice. Cancer Res.53(20), 4890–4895 (1993).
  • McGary EC, Weber K, Mills L et al. Inhibition of platelet-derived growth factor-mediated proliferation of osteosarcoma cells by the novel tyrosine kinase inhibitor STI571. Clin. Cancer Res.8(11), 3584–3591 (2002).
  • McGary EC, Heimberger A, Mills L et al. A fully human antimelanoma cellular adhesion molecule/MUC18 antibody inhibits spontaneous pulmonary metastasis of osteosarcoma cells in vivo.Clin. Cancer Res.9(17), 6560–6566 (2003).
  • Labrinidis A, Hay S, Liapis V et al. Zoledronic acid inhibits both the osteolytic and osteoblastic components of osteosarcoma lesions in a mouse model. Clin. Cancer Res.15(10), 3451–3461 (2009).
  • Jones PA, Rhim JS, Isaacs H Jr, McAllister RM. The relationship between tumorigenicity, growth in agar and fibrinolytic activity in a line of human osteosarcoma cells. Int. J. Cancer16(4), 616–621 (1975).
  • Rhim JS, Putman DL, Arnstein P, Huebner RJ, McAllister RM. Characterization of human cells transformed in vitro by N-methyl-N´-nitro-N-nitrosoguanidine. Int. J. Cancer19(4), 505–510 (1977).
  • Guo Y, Rubin EM, Xie J, Zi X, Hoang BH. Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin. Orthop. Relat. Res.466(9), 2039–2045 (2008).
  • Rubin EM, Guo Y, Tu K et al. Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma. Mol. Cancer Ther.9(3), 731–741 (2010).
  • Tome Y, Tsuchiya H, Hayashi K et al.In vivo gene transfer between interacting human osteosarcoma cell lines is associated with acquisition of enhanced metastatic potential. J. Cell. Biochem.108(2), 362–367 (2009).
  • Hayashi K, Zhao M, Yamauchi K et al. Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhimurium.Cell Cycle8(6), 870–875 (2009).
  • Fogh J, Fogh JM, Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J. Natl Cancer Inst.59(1), 221–226 (1977).
  • Jia SF, Worth LL, Kleinerman ES. A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies. Clin. Exp. Metastasis17(6), 501–506 (1999).
  • Jia SF, Worth LL, Turan M, Duan Xp XP, Kleinerman ES. Eradication of osteosarcoma lung metastasis using intranasal gemcitabine. Anticancer Drug13(2), 155–161 (2002).
  • Dass CR, Ek ET, Contreras KG, Choong PF. A novel orthotopic murine model provides insights into cellular and molecular characteristics contributing to human osteosarcoma. Clin. Exp. Metastasis23(7–8), 367–380 (2006).
  • Ek ET, Dass CR, Contreras KG, Choong PF. Inhibition of orthotopic osteosarcoma growth and metastasis by multitargeted antitumor activities of pigment epithelium-derived factor. Clin. Exp. Metastasis24(2), 93–106 (2007).
  • Ek ET, Dass CR, Contreras KG, Choong PF. Pigment epithelium-derived factor overexpression inhibits orthotopic osteosarcoma growth, angiogenesis and metastasis. Cancer Gene Ther.14(7), 616–626 (2007).
  • Ek ET, Dass CR, Contreras KG, Choong PF. PEDF-derived synthetic peptides exhibit antitumor activity in an orthotopic model of human osteosarcoma. J. Orthop. Res.25(12), 1671–1680 (2007).
  • Dass CR, Choong PF. Zoledronic acid inhibits osteosarcoma growth in an orthotopic model. Mol. Cancer Ther.6(12 Pt 1), 3263–3270 (2007).
  • Dass CR, Contreras KG, Dunstan DE, Choong PF. Chitosan microparticles encapsulating PEDF plasmid demonstrate efficacy in an orthotopic metastatic model of osteosarcoma. Biomaterials28(19), 3026–3033 (2007).
  • Martin TJ, Ingleton PM, Underwood JC et al. Parathyroid hormone-responsive adenylate cyclase in induced transplantable osteogenic rat sarcoma. Nature260(5550), 436–438 (1976).
  • Fisher JL, Mackie PS, Howard ML, Zhou H, Choong PF. The expression of the urokinase plasminogen activator system in metastatic murine osteosarcoma: an in vivo mouse model. Clin. Cancer Res.7(6), 1654–1660 (2001).
  • Schmidt J, Strauss GP, Schon A et al. Establishment and characterization of osteogenic cell lines from a spontaneous murine osteosarcoma. Differentiation39(3), 151–160 (1988).
  • Khanna C, Prehn J, Yeung C et al. An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin. Exp. Metastasis18(3), 261–271 (2000).
  • Wan X, Mendoza A, Khanna C, Helman LJ. Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res.65(6), 2406–2411 (2005).
  • Terabe M, Khanna C, Bose S et al. CD1d-restricted natural killer T cells can down-regulate tumor immunosurveillance independent of interleukin-4 receptor-signal transducer and activator of transcription 6 or transforming growth factor-β. Cancer Res.66(7), 3869–3875 (2006).
  • Barkan D, Kleinman H, Simmons JL et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res.68(15), 6241–6250 (2008).
  • Merchant MS, Melchionda F, Sinha M et al. Immune reconstitution prevents metastatic recurrence of murine osteosarcoma. Cancer Immunol. Immunother.56(7), 1037–1046 (2007).
  • Gordon N, Koshkina NV, Jia SF et al. Corruption of the Fas pathway delays the pulmonary clearance of murine osteosarcoma cells, enhances their metastatic potential, and reduces the effect of aerosol gemcitabine. Clin.Cancer Res.13(15 Pt 1), 4503–4510 (2007).
  • Leaner VD, Chick JF, Donninger H et al. Inhibition of AP-1 transcriptional activity blocks the migration, invasion, and experimental metastasis of murine osteosarcoma. Am. J. Pathol.174(1), 265–275 (2009).
  • Hong SH, Briggs J, Newman R et al. Murine osteosarcoma primary tumour growth and metastatic progression is maintained after marked suppression of serum insulin-like growth factor I. Int. J. Cancer124(9), 2042–2049 (2009).
  • Kim SY, Lee CH, Midura BV et al. Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin. Exp. Metastasis25(3), 201–211 (2008).
  • Miretti S, Roato I, Taulli R et al. A mouse model of pulmonary metastasis from spontaneous osteosarcoma monitored in vivo by Luciferase imaging. PLoS ONE3(3), e1828 (2008).
  • Asai T, Ueda T, Itoh K et al. Establishment and characterization of a murine osteosarcoma cell line (LM8) with high metastatic potential to the lung. Int. J. Cancer76(3), 418–422 (1998).
  • Sottnik JL, Duval DL, Ehrhart EJ, Thamm DH. An orthotopic, postsurgical model of luciferase transfected murine osteosarcoma with spontaneous metastasis. Clin. Exp. Metastasis27(3), 151–160 (2010).
  • Sauer B, Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl Acad. Sci. USA85(14), 5166–5170 (1988).
  • Mueller F, Fuchs B, Kaser-Hotz B. Comparative biology of human and canine osteosarcoma. Anticancer Res.27(1A), 155–164 (2007).
  • Withrow SJ, Powers BE, Straw RC, Wilkins RM. Comparative aspects of osteosarcoma. Dog versus man. Clin. Orthop. Relat. Res. (270), 159–168 (1991).
  • Vail DM, MacEwen EG. Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest.18(8), 781–792 (2000).
  • van Leeuwen IS, Cornelisse CJ, Misdorp W et al.P53 gene mutations in osteosarcomas in the dog. Cancer Lett.111(1–2), 173–178 (1997).
  • Johnson AS, Couto CG, Weghorst CM. Mutation of the p53 tumor suppressor gene in spontaneously occurring osteosarcomas of the dog. Carcinogenesis19(1), 213–217 (1998).
  • Levine RA, Fleischli MA. Inactivation of p53 and retinoblastoma family pathways in canine osteosarcoma cell lines. Vet. Pathol.37(1), 54–61 (2000).
  • Levine RA, Forest T, Smith C. Tumor suppressor PTEN is mutated in canine osteosarcoma cell lines and tumors. Vet. Pathol.39(3), 372–378 (2002).
  • Ferracini R, Angelini P, Cagliero E et al.MET oncogene aberrant expression in canine osteosarcoma. J. Orthop. Res.18(2), 253–256 (2000).
  • MacEwen EG, Kutzke J, Carew J et al. c-Met tyrosine kinase receptor expression and function in human and canine osteosarcoma cells. Clin. Exp. Metastasis20(5), 421–430 (2003).
  • De Maria R, Miretti S, Iussich S et al.MET oncogene activation qualifies spontaneous canine osteosarcoma as a suitable pre-clinical model of human osteosarcoma. J. Pathol.218(3), 399–408 (2009).
  • Khanna C, Wan X, Bose S et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat. Med.10(2), 182–186 (2004).
  • Paoloni M, Davis S, Lana S et al. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genomics10, 625 (2009).
  • Liao AT, McMahon M, London CA. Identification of a novel germline MET mutation in dogs. Anim. Genet.37(3), 248–252 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.