258
Views
32
CrossRef citations to date
0
Altmetric
Key Paper Evaluation

Genetic alterations of FGF receptors: an emerging field in clinical cancer diagnostics and therapeutics

Pages 1375-1379 | Published online: 10 Jan 2014

References

  • Turner N, Pearson A, Sharpe R et al.FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res.70(5), 2085–2094 (2010).
  • Katoh M. RNA technology targeted to the WNT signaling pathway. Cancer Biol. Ther.7(2), 265–267 (2008).
  • Katoh M. WNT and FGF gene clusters. Int. J. Oncol.21(6), 1269–1273 (2002).
  • Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev.16(2), 139–149 (2005).
  • Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev.16(2), 233–247 (2005).
  • Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem.281(23), 15694–15700 (2006).
  • Bae JH, Schlessinger J. Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases. Mol. Cells29(5), 443–448 (2010).
  • Adnane J, Gaudray P, Dionne CA et al.BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene6, 659–663 (1991).
  • Theillet C, Adelaide J, Louason G et al.FGFR1 and PLAT genes and DNA amplification at 8p12 in breast and ovarian cancers. Genes Chromosomes Cancer7(4), 219–226 (1993).
  • Xiao S, Nalabolu SR, Aster JC et al.FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat. Genet.18(1), 84–87 (1998).
  • Simon R, Richter J, Wagner U et al. High-throughput tissue microarray analysis of 3p25 (RAF1) and 8p12 (FGFR1) copy number alterations in urinary bladder cancer. Cancer Res.61(11), 4514–4519 (2001).
  • Rand V, Huang J, Stockwell T et al. Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. Proc. Natl Acad. Sci. USA102(40), 14344–14349 (2005).
  • Freier K, Schwaenen C, Sticht C et al. Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC). Oral Oncol.43(1), 60–66 (2007).
  • Lin WM, Baker AC, Beroukhim R et al. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res.68(3), 664–673 (2008).
  • Missiaglia E, Selfe J, Hamdi M et al. Genomic imbalances in rhabdomyosarcoma cell lines affect expression of genes frequently altered in primary tumors: an approach to identify candidate genes involved in tumor development. Genes Chromosomes Cancer48(6), 455–467 (2009).
  • Stephens P, Edkins S, Davies H et al. A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat. Genet.37(6), 590–592 (2005).
  • Easton DF, Pooley KA, Dunning AM et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature447(7148), 1087–1093 (2007).
  • Nakatani H, Sakamoto H, Yoshida T et al. Isolation of an amplified DNA sequence in stomach cancer. Jpn. J. Cancer Res.81(8), 707–710 (1990).
  • Jang JH, Shin KH, Park JG. Mutations in fibroblast growth factor receptor 2 and fibroblast growth factor receptor 3 genes associated with human gastric and colorectal cancers. Cancer Res.61(9), 3541–3543 (2001).
  • Davies H, Hunter C, Smith R et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res.65(17), 7591–7595 (2005).
  • Pollock PM, Gartside MG, Dejeza LC et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene26(50), 7158–7162 (2007).
  • Gartside MG, Chen H, Ibrahimi OA et al. Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Mol. Cancer Res.7(1), 41–54 (2009).
  • Camps J, Nguyen QT, Padilla-Nash HM et al. Integrative genomics reveals mechanisms of copy number alterations responsible for transcriptional deregulation in colorectal cancer. Genes Chromosomes Cancer48(11), 1002–1017 (2009).
  • Chesi M, Nardini E, Brents LA et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of FGFR3. Nat. Genet.16(3), 260–264 (1997).
  • Cappellen D, De Oliveira C, Ricol D et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet.23(1), 18–20 (1999).
  • Nord H, Segersten U, Sandgren J et al. Focal amplifications are associated with high grade and recurrences in stage Ta bladder carcinoma. Int. J. Cancer126(6), 1390–1402 (2010).
  • Yagasaki F, Wakao D, Yokoyama Y et al. Fusion of ETV6 to fibroblast growth factor receptor 3 in peripheral T-cell lymphoma with a t(4;12)(p16;p13) chromosomal translocation. Cancer Res.61(23), 8371–8374 (2001).
  • Zhang Y, Hiraishi Y, Wang H et al. Constitutive activating mutation of the FGFR3b in oral squamous cell carcinomas. Int. J. Cancer117(1), 166–168 (2005).
  • Goriely A, Hansen RM, Taylor IB et al. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat. Genet.41(11), 1247–1252 (2009).
  • Bange J, Prechtl D, Cheburkin Y et al. Cancer progression and tumor cell motility are associated with the FGFR4 Arg 388 allele. Cancer Res.62(3), 840–847 (2002).
  • Spinola M, Leoni V, Pignatiello C et al. Functional FGFR4 Gly388Arg polymorphism predicts prognosis in lung adenocarcinoma patients. J. Clin. Oncol.23(29), 7307–7311 (2005).
  • Marks JL, McLellan MD, Zakowski MF et al. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4. PLoS One2(5), e426 (2007).
  • Taylor JG 6th, Cheuk AT, Tsang PS et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J. Clin. Invest.119(11), 3395–3407 (2009).
  • Katoh M. Cancer genomics and genetics of FGFR2. Int. J. Oncol.33(2), 233–237 (2008).
  • Turner N, Lambros MB, Horlings HM et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene29(14), 2013–2023 (2010).
  • Katoh M, Katoh M. FGFR2 and WDR11 are neighboring oncogene and tumor suppressor gene on human chromosome 10q26. Int. J. Oncol.22(5), 1155–1159 (2003).
  • Meyer KB, Maia A-T, O’Reilly M et al. Allele-specific upregulation of FGFR2 increases susceptibility to breast cancer. PLoS Biol.6, e108 (2008).
  • Katoh Y, Katoh M. FGFR2-related pathogenesis and FGFR2-targeted therapeutics. Int. J. Mol. Med.23(3), 307–311 (2009).
  • Moffa AB, Tannheimer SL, Ethier SP. Transforming potential of alternatively spliced variants of FGFR2 in human mammary epithelial cells. Mol. Cancer Res.2(11), 643–652 (2004).
  • Soler G, Nusbaum S, Varet B et al.LRRFIP1, a new FGFR1 partner gene associated with 8p11 myeloproliferative syndrome. Leukemia23(7), 1359–1361 (2009).
  • Katoh M. Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change, and genetic alteration in gastric cancer. Cancer Biol. Ther.6(6), 832–839 (2007).
  • Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin. Cancer Res.13(14), 4042–4045 (2007).
  • Katoh Y, Katoh M. Hedgehog signaling, epithelial-to-mesenchymal transition, and miRNA. Int. J. Mol. Med.22(2), 271–275 (2008).
  • Katoh M, Katoh M. Integrative genomic analyses of CXCR4: transcriptional regulation of CXCR4 based on TGFb, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX17, and GFI1 transcription factors. Int. J. Oncol.36(2), 415–420 (2010).
  • Mohammadi M, Froum S, Hamby JM et al. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J.17(20), 5896–5904 (1998).
  • Wedge SR, Kendrew J, Hennequin LF et al. AZD2171: a highly potent, orally bioavailable, VEGFR2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res.65(10), 4389–4400 (2005).
  • Trudel S, Li ZH, Wei E et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood105(7), 2941–2948 (2005).
  • Nakamura K, Yashiro M, Matsuoka T et al. A novel molecular targeting compound as FGFR2 phosphorylation inhibitor, Ki23057, for scirrhous gastric cancer. Gastroenterology131(5), 1530–1541 (2006).
  • Pan BS, Chan GK, Chenard M et al. MK-2461, a novel multitargeted kinase inhibitor, preferentially inhibits the activated c-Met receptor. Cancer Res.70(4), 1524–1533 (2010).
  • Bhide RS, Lombardo LJ, Hunt JT et al. The antiangiogenic activity in xenograft models of brivanib, a dual inhibitor of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinases. Mol. Cancer Ther.9(2), 369–378 (2010).
  • Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors: impact on future treatment strategies. Nat. Rev. Clin. Oncol. DOI: 10.1038/nrclinonc.2010.97 (2010) (Epub ahead of print).
  • Pao W, Wang TY, Riely GJ et al.KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med.2(1), e17 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.