132
Views
25
CrossRef citations to date
0
Altmetric
Review

Anaplastic thyroid cancer: a comprehensive review of novel therapy

, &
Pages 387-402 | Published online: 10 Jan 2014

References

  • Sherman SI. Thyroid carcinoma. Lancet361(9356), 501–511 (2003).
  • Smallridge RC, Marlow LA, Copland JA. Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr. Relat. Cancer16(1), 17–44 (2009).
  • Pinchot SN, Sippel RS, Chen H. Multi-targeted approach in the treatment of thyroid cancer. Ther. Clin. Risk Manag.4(5), 935–947 (2008).
  • Wiseman SM, Masoudi H, Niblock P et al. Anaplastic thyroid carcinoma: expression profile of targets for therapy offers new insights for disease treatment. Ann. Surg. Oncol.14(2), 719–729 (2007).
  • Brignardello E, Gallo M, Baldi I et al. Anaplastic thyroid carcinoma: clinical outcome of 30 consecutive patients referred to a single institution in the past 5 years. Eur. J. Endocrinol.156(4), 425–430 (2007).
  • Baroli A, Pedrazzini L, Lomuscio G, Marzoli L. Anaplastic thyroid carcinoma. Practical aspects of multimodal therapy and data emerging from a 40-year experience at a single Italian institution. Minerva Endocrinol.35(1), 9–16 (2010).
  • Chiacchio S, Lorenzoni A, Boni G et al. Anaplastic thyroid cancer: prevalence, diagnosis and treatment. Minerva Endocrinol.33(4), 341–357 (2008).
  • Stenner F, Liewen H, Zweifel M et al. Targeted therapeutic approach for an anaplastic thyroid cancer in vitro and in vivo. Cancer Sci.99(9), 1847–1852 (2008).
  • Moretti F, Farsetti A, Soddu S et al. p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene14(6), 729–740 (1997).
  • Ishii Y, Waxman S, Germain D. Targeting the ubiquitin-proteasome pathway in cancer therapy. Anticancer Agents Med. Chem.7(3), 359–365 (2007).
  • Grommes C, Landreth GE, Heneka MT. Antineoplastic effects of peroxisome proliferator-activated receptor γ agonists. Lancet Oncol.5(7), 419–429 (2004).
  • Antonelli A, Rotondi M, Ferrari SM et al. Interferon-γ-inducible α-chemokine CXCL10 involvement in Graves’ ophthalmopathy: modulation by peroxisome proliferator-activated receptor-γ agonists. J. Clin. Endocrinol. Metab.91(2), 614–620 (2006).
  • Miccoli P, Materazzi G, Antonelli A et al. New trends in the treatment of undifferentiated carcinomas of the thyroid. Langenbecks Arch. Surg.392(4), 397–404 (2007).
  • Wiseman SM, Masoudi H, Niblock P et al. Derangement of the E-cadherin/catenin complex is involved in transformation of differentiated to anaplastic thyroid carcinoma. Am. J. Surg.191(5), 581–587 (2006).
  • Wiseman SM, Loree TR, Hicks WL Jr et al. Anaplastic thyroid cancer evolved from papillary carcinoma: demonstration of anaplastic transformation by means of the inter-simple sequence repeat polymerase chain reaction. Arch. Otolaryngol. Head Neck Surg.129(1), 96–100 (2003).
  • Wiseman SM, Loree TR, Rigual NR et al. Anaplastic transformation of thyroid cancer: review of clinical, pathologic, and molecular evidence provides new insights into disease biology and future therapy. Head Neck25(8), 662–670 (2003).
  • Wiseman SM, Griffith OL, Deen S et al. Identification of molecular markers altered during transformation of differentiated into anaplastic thyroid carcinoma. Arch. Surg.142(8), 717–727 (2007).
  • Antonelli A, Fallahi P, Ferrari SM et al. Dedifferentiated thyroid cancer: a therapeutic challenge. Biomed. Pharmacother.62(8), 559–563 (2008).
  • Schweppe RE, Klopper JP, Korch C et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J. Clin. Endocrinol. Metab.93(11), 4331–4341 (2008).
  • Antonelli A, Ferrari SM, Fallahi P et al. Primary cell cultures from anaplastic thyroid cancer obtained by fine-needle aspiration used for chemosensitivity tests. Clin. Endocrinol.69(1), 148–152 (2008).
  • Santoro M, Carlomagno F. Drug insight: Small-molecule inhibitors of protein kinases in the treatment of thyroid cancer. Nature Clin. Prac.2(1), 42–52 (2006).
  • Gupta -Abramson V, Troxel AB, Nellore A et al. Phase II trial of sorafenib in advanced thyroid cancer. J. Clin. Oncol.26(29), 4714–4719 (2008).
  • Cohen EE, Rosen LS, Vokes EE et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a Phase II study. J. Clin. Oncol.26(29), 4708–4713 (2008).
  • Volante M, Rapa I, Papotti M. Poorly differentiated thyroid carcinoma: diagnostic features and controversial issues. Endocrine Pathol.19(3), 150–155 (2008).
  • Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr. Rev.28(7), 742–762 (2007).
  • Fagin JA, Mitsiades N. Molecular pathology of thyroid cancer: diagnostic and clinical implications. Best Prac. Res.22(6), 955–969 (2008).
  • Knauf JA, Fagin JA. Role of MAPK pathway oncoproteins in thyroid cancer pathogenesis and as drug targets. Current Opin. Cell Biol.21(2), 296–303 (2009).
  • Mitsiades CS, Negri J, McMullan C et al. Targeting BRAFV600E in thyroid carcinoma: therapeutic implications. Mol. Cancer Ther.6(3), 1070–1078 (2007).
  • Ball DW, Jin N, Rosen DM et al. Selective growth inhibition in BRAF mutant thyroid cancer by the mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244. J. Clin. Endocrinol. Metab.92(12), 4712–4718 (2007).
  • Kim S, Yazici YD, Calzada G et al. Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Mol. Cancer Ther.6(6), 1785–1792 (2007).
  • Sala E, Mologni L, Truffa S et al. BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Mol. Cancer Res.6(5), 751–759 (2008).
  • Schweppe RE, Kerege AA, Sharma V et al. Distinct genetic alterations in the mitogen-activated protein kinase pathway dictate sensitivity of thyroid cancer cells to mitogen–activated protein kinase kinase 1/2 inhibition. Thyroid19(8), 825–835 (2009).
  • Riesco-Eizaguirre G, Santisteban P. New insights in thyroid follicular cell biology and its impact in thyroid cancer therapy. Endocr. Relat. Cancer14(4), 957–977 (2007).
  • Paes JE, Ringel MD. Dysregulation of the phosphatidylinositol 3-kinase pathway in thyroid neoplasia. Endocrinol. Metab. Clin. North Am.37(2), 375–387, viii–ix (2008).
  • Plyte S, Musacchio A. PLK1 inhibitors: setting the mitotic death trap. Curr. Biol.17(8), R280–R283 (2007).
  • Nappi TC, Salerno P, Zitzelsberger H et al. Identification of Polo-like kinase 1 as a potential therapeutic target in anaplastic thyroid carcinoma. Cancer Res.69(5), 1916–1923 (2009).
  • Brown EJ, Albers MW, Shin TB et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature369(6483), 756–758 (1994).
  • Papewalis C, Wuttke M, Schinner S et al. Role of the Novel mTOR inhibitor RAD001 (everolimus) in anaplastic thyroid cancer. Horm. Metab. Res.41(10), 752–756 (2009).
  • Oudard S, Medioni J, Aylllon J et al. Everolimus (RAD001): an mTOR inhibitor for the treatment of metastatic renal cell carcinoma. Expert Rev. Anticancer Ther.9(6), 705–717 (2009).
  • Ensinger C, Spizzo G, Moser P et al. Epidermal growth factor receptor as a novel therapeutic target in anaplastic thyroid carcinomas. Ann. NY Acad. Sci.1030, 69–77 (2004).
  • Mitsiades CS, Kotoula V, Poulaki V et al. Epidermal growth factor receptor as a therapeutic target in human thyroid carcinoma: mutational and functional analysis. J. Clin. Endocrinol. Metab.91(9), 3662–3666 (2006).
  • Sun L, Liang C, Shirazian S et al. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem.46(7), 1116–1119 (2003).
  • Hoffmann S, Burchert A, Wunderlich A et al. Differential effects of cetuximab and AEE 788 on epidermal growth factor receptor (EGF-R) and vascular endothelial growth factor receptor (VEGF-R) in thyroid cancer cell lines. Endocrine31(2), 105–113 (2007).
  • Kim S, Prichard CN, Younes MN et al. Cetuximab and irinotecan interact synergistically to inhibit the growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Clin. Cancer Res.12(2), 600–607 (2006).
  • Lopez JP, Wang-Rodriguez J, Chang CY et al. Gefitinib (Iressa) potentiates the effect of ionizing radiation in thyroid cancer cell lines. Laryngoscope118(8), 1372–1376 (2008).
  • Lopez JP, Wang–Rodriguez J, Chang C et al. Gefitinib inhibition of drug resistance to doxorubicin by inactivating ABCG2 in thyroid cancer cell lines. Arch. Otolaryngol. Head Neck Surg.133(10), 1022–1027 (2007).
  • Hogan T, Jing Jie Y, Williams HJ et al. Oncocytic, focally anaplastic, thyroid cancer responding to erlotinib. J. Oncol. Pharm. Pract.15(2), 111–117 (2009).
  • Pennell NA, Daniels GH, Haddad RI et al. A Phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid18(3), 317–323 (2008).
  • Fury MG, Solit DB, Su YB et al. A Phase I trial of intermittent high–dose gefitinib and fixed-dose docetaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol.59(4), 467–475 (2007).
  • Schweppe RE, Kerege AA, French JD et al. Inhibition of Src with AZD0530 reveals the Src–Focal adhesion kinase complex as a novel therapeutic target in papillary and anaplastic thyroid cancer. J. Clin. Endocrinol. Metab.94(6), 2199–2203 (2009).
  • Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med.7(9), 987–989 (2001).
  • O’Neill JP, Power D, Condron C, Bouchier-Hayes D, Walsh M. Anaplastic thyroid cancer, tumorigenesis and therapy. Irish J. Med. Sci.179(1), 9–15 (2010).
  • Prichard CN, Kim S, Yazici YD et al. Concurrent cetuximab and bevacizumab therapy in a murine orthotopic model of anaplastic thyroid carcinoma. Laryngoscope117(4), 674–679 (2007).
  • Gomez–Rivera F, Santillan–Gomez AA, Younes MN et al. The tyrosine kinase inhibitor, AZD2171, inhibits vascular endothelial growth factor receptor signaling and growth of anaplastic thyroid cancer in an orthotopic nude mouse model. Clin. Cancer Res.13(15 Pt 1), 4519–4527 (2007).
  • Kim S, Schiff BA, Yigitbasi OG et al. Targeted molecular therapy of anaplastic thyroid carcinoma with AEE788. Mol. Cancer Ther.4(4), 632–640 (2005).
  • Cooney MM, Ortiz J, Bukowski RM, Remick SC. Novel vascular targeting/disrupting agents: combretastatin A4 phosphate and related compounds. Curr. Oncol. Rep.7(2), 90–95 (2005).
  • Mooney CJ, Nagaiah G, Fu P et al. A Phase II trial of fosbretabulin in advanced anaplastic thyroid carcinoma and correlation of baseline serum-soluble intracellular adhesion molecule-1 with outcome. Thyroid19(3), 233–240 (2009).
  • Sherman SI. Early clinical studies of novel therapies for thyroid cancers. Endocrinol. Metab. Clin. North Am.37(2), 511–524, xi (2008).
  • Sherman SI. Molecularly targeted therapies for thyroid cancers. Endocr. Pract.15(6), 605–611 (2009).
  • Fuente N, Mane JM, Barcelo R et al. Tumor lysis syndrome in a multiple myeloma treated with thalidomide. Ann. Oncol.15(3), 537 (2004).
  • Ain KB, Lee C, Williams KD. Phase II trial of thalidomide for therapy of radioiodine-unresponsive and rapidly progressive thyroid carcinomas. Thyroid17(7), 663–670 (2007).
  • Lam KY, Lo CY, Chan KW, Wan KY. Insular and anaplastic carcinoma of the thyroid: a 45-year comparative study at a single institution and a review of the significance of p53 and p21. Ann. Surg.231(3), 329–338 (2000).
  • Segev DL, Umbricht C, Zeiger MA. Molecular pathogenesis of thyroid cancer. Surg. Oncol.12(2), 69–90 (2003).
  • Ulisse S, Delcros JG, Baldini E et al. Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int. J. Cancer119(2), 275–282 (2006).
  • Arlot–Bonnemains Y, Baldini E, Martin B et al. Effects of the Aurora kinase inhibitor VX-680 on anaplastic thyroid cancer-derived cell lines. Endocr. Relat. Cancer15(2), 559–568 (2008).
  • Moretti F, Nanni S, Farsetti A et al. Effects of exogenous p53 transduction in thyroid tumor cells with different p53 status. J. Clin. Endocrinol. Metab.85(1), 302–308 (2000).
  • Nagayama Y, Yokoi H, Takeda K et al. Adenovirus-mediated tumor suppressor p53 gene therapy for anaplastic thyroid carcinoma in vitro and in vivo. J. Clin. Endocrinol. Metab.85(11), 4081–4086 (2000).
  • Pacifico F, Leonardi A. Role of NF-κB in thyroid cancer. Mol. Cell Endocrinol. (2009).
  • Meng Z, Mitsutake N, Nakashima M et al. Dehydroxymethylepoxyquinomicin, a novel nuclear factor-κB inhibitor, enhances antitumor activity of taxanes in anaplastic thyroid cancer cells. Endocrinology149(11), 5357–5365 (2008).
  • Mishra J, Ma Q, Prada A et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J. Am. Soc. Nephrol.14(10), 2534–2543 (2003).
  • Iannetti A, Pacifico F, Acquaviva R et al. The neutrophil gelatinase–associated lipocalin (NGAL), a NF-κB-regulated gene, is a survival factor for thyroid neoplastic cells. Proc. Natl Acad. Sci. USA105(37), 14058–14063 (2008).
  • Zhu W, Ou Y, Li Y et al. A small–molecule triptolide suppresses angiogenesis and invasion of human anaplastic thyroid carcinoma cells via down-regulation of the nuclear factor-κB pathway. Mol. Pharmacol.75(4), 812–819 (2009).
  • Festa M, Petrella A, Alfano S, Parente L. R-roscovitine sensitizes anaplastic thyroid carcinoma cells to TRAIL-induced apoptosis via regulation of IKK/NF-κB pathway. Int. J. Cancer124(11), 2728–2736 (2009).
  • Bonofiglio D, Qi H, Gabriele S et al. Peroxisome proliferator-activated receptor γ inhibits follicular and anaplastic thyroid carcinoma cells growth by upregulating p21Cip1/WAF1 gene in a Sp1-dependent manner. Endocr. Relat. Cancer15(2), 545–557 (2008).
  • Antonelli A, Ferrari SM, Fallahi P et al. Evaluation of the sensitivity to chemotherapeutics or thiazolidinediones of primary anaplastic thyroid cancer cells obtained by fine-needle aspiration. Eur. J. Endocrinol.159(3), 283–291 (2008).
  • Antonelli A, Ferrari SM, Fallahi P et al. Thiazolidinediones and antiblastics in primary human anaplastic thyroid cancer cells. Clin. Endocrinol.70(6), 946–953 (2009).
  • Hayashi N, Nakamori S, Hiraoka N et al. Antitumor effects of peroxisome proliferator activate receptor γ ligands on anaplastic thyroid carcinoma. Int. J. Oncol.24(1), 89–95 (2004).
  • Su W, Necela BM, Fujiwara K et al. The high affinity peroxisome proliferator-activated receptor-γ agonist RS5444 inhibits both initiation and progression of colon tumors in azoxymethane-treated mice. Int. J. Cancer123(5), 991–997 (2008).
  • Marlow LA, Reynolds LA, Cleland AS et al. Reactivation of suppressed RhoB is a critical step for the inhibition of anaplastic thyroid cancer growth. Cancer Res.69(4), 1536–1544 (2009).
  • Shimazaki N, Togashi N, Hanai M et al. Anti-tumour activity of CS–7017, a selective peroxisome proliferator-activated receptor γ agonist of thiazolidinedione class, in human tumour xenografts and a syngeneic tumour implant model. Eur. J. Cancer44(12), 1734–1743 (2008).
  • Park JW, Zarnegar R, Kanauchi H et al. Troglitazone, the peroxisome proliferator-activated receptor-γ agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines. Thyroid15(3), 222–231 (2005).
  • Philips JC, Petite C, Willi JP, Buchegger F, Meier CA. Effect of peroxisome proliferator-activated receptor γ agonist, rosiglitazone, on dedifferentiated thyroid cancers. Nuclear Med. Comm.25(12), 1183–1186 (2004).
  • Altucci L, Leibowitz MD, Ogilvie KM, de Lera AR, Gronemeyer H. RAR and RXR modulation in cancer and metabolic disease. Nat. Rev. Drug Discov.6(10), 793–810 (2007).
  • Jeong H, Kim YR, Kim KN et al. Effect of all-trans retinoic acid on sodium/iodide symporter expression, radioiodine uptake and gene expression profiles in a human anaplastic thyroid carcinoma cell line. Nuclear Med. Biol.33(7), 875–882 (2006).
  • Lan L, Cui D, Luo Y et al. Inhibitory effects of retinoic acid on invasiveness of human thyroid carcinoma cell lines in vitro. J. Endocrinol. Invest.32(9), 731–738 (2009).
  • Rigas JR, Dragnev KH. Emerging role of rexinoids in non-small cell lung cancer: focus on bexarotene. Oncologist10(1), 22–33 (2005).
  • Gniadecki R, Assaf C, Bagot M et al. The optimal use of bexarotene in cutaneous T-cell lymphoma. Br. J. Dermatol.157(3), 433–440 (2007).
  • Klopper JP, Berenz A, Hays WR et al. In vivo and microarray analysis of rexinoid-responsive anaplastic thyroid carcinoma. Clin. Cancer Res.14(2), 589–596 (2008).
  • Gruning T, Tiepolt C, Zophel K et al. Retinoic acid for redifferentiation of thyroid cancer – does it hold its promise? Eur. J. Endocrinol.148(4), 395–402 (2003).
  • Short SC, Suovuori A, Cook G, Vivian G, Harmer C. A Phase II study using retinoids as redifferentiation agents to increase iodine uptake in metastatic thyroid cancer. Clin. Oncol.16(8), 569–574 (2004).
  • Du ZX, Wang HQ, Zhang HY, Gao DX. Involvement of glyceraldehyde-3-phosphate dehydrogenase in tumor necrosis factor-related apoptosis-inducing ligand-mediated death of thyroid cancer cells. Endocrinology148(9), 4352–4361 (2007).
  • Yang Y, Kitagaki J, Wang H, Hou DX, Perantoni AO. Targeting the ubiquitin–proteasome system for cancer therapy. Cancer Sci.100(1), 24–28 (2009).
  • Richardson PG, Barlogie B, Berenson J et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med.348(26), 2609–2617 (2003).
  • Conticello C, Adamo L, Giuffrida R et al. Proteasome inhibitors synergize with tumor necrosis factor-related apoptosis-induced ligand to induce anaplastic thyroid carcinoma cell death. J. Clin. Endocrinol. Metab.92(5), 1938–1942 (2007).
  • Takakura S, Mitsutake N, Nakashima M et al. Oncogenic role of miR-17–92 cluster in anaplastic thyroid cancer cells. Cancer Sci.99(6), 1147–1154 (2008).
  • Lin SF, Gao SP, Price DL et al. Synergy of a herpes oncolytic virus and paclitaxel for anaplastic thyroid cancer. Clin. Cancer Res.14(5), 1519–1528 (2008).
  • Reddi HV, Madde P, Reichert-Eberhardt AJ et al. ONYX-411, a conditionally replicative oncolytic adenovirus, induces cell death in anaplastic thyroid carcinoma cell lines and suppresses the growth of xenograft tumors in nude mice. Cancer Gene Ther.15(11), 750–757 (2008).
  • Libertini S, Iacuzzo I, Perruolo G et al. Bevacizumab increases viral distribution in human anaplastic thyroid carcinoma xenografts and enhances the effects of E1A-defective adenovirus dl922–947. Clin. Cancer Res.14(20), 6505–6514 (2008).
  • Lin SF, Yu Z, Riedl C et al. Treatment of anaplastic thyroid carcinoma in vitro with a mutant vaccinia virus. Surgery142(6), 976–983 (2007).
  • Lin SF, Price DL, Chen CH et al. Oncolytic vaccinia virotherapy of anaplastic thyroid cancer in vivo. J. Clin. Endocrinol. Metab.93(11), 4403–4407 (2008).
  • Abbosh PH, Li X, Li L et al. A conditionally replicative, Wnt/β-catenin pathway-based adenovirus therapy for anaplastic thyroid cancer. Cancer Gene Ther.14(4), 399–408 (2007).
  • Catalano MG, Poli R, Pugliese M, Fortunati N, Boccuzzi G. Emerging molecular therapies of advanced thyroid cancer. Mol. Asp. Med.31(2), 215–226 (2010).
  • Catalano MG, Pugliese M, Poli R et al. Effects of the histone deacetylase inhibitor valproic acid on the sensitivity of anaplastic thyroid cancer cell lines to imatinib. Oncol. Rep.21(2), 515–521 (2009).
  • Catalano MG, Poli R, Pugliese M, Fortunati N, Boccuzzi G. Valproic acid enhances tubulin acetylation and apoptotic activity of paclitaxel on anaplastic thyroid cancer cell lines. Endocr. Relat. Cancer14(3), 839–845 (2007).
  • Catalano MG, Fortunati N, Pugliese M et al. Valproic acid, a histone deacetylase inhibitor, enhances sensitivity to doxorubicin in anaplastic thyroid cancer cells. J. Endocrinol.191(2), 465–472 (2006).
  • Catalano MG, Fortunati N, Pugliese M et al. Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells. J. Clin. Endocrinol. Metab.90(3), 1383–1389 (2005).
  • Noguchi H, Yamashita H, Murakami T et al. Successful treatment of anaplastic thyroid carcinoma with a combination of oral valproic acid, chemotherapy, radiation and surgery. Endocrine J.56(2), 245–249 (2009).
  • Dowlati A, Robertson K, Cooney M et al. A Phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res.62(12), 3408–3416 (2002).
  • Deshpande HA, Gettinger SN, Sosa JA. Novel chemotherapy options for advanced thyroid tumors: small molecules offer great hope. Curr. Opin. Oncol.20(1), 19–24 (2008).
  • Rovere RK, Awada A. Treatment of recurrent thyroid cancers – is there a light in the horizon? Curr. Opin. Oncol.20(3), 245–248 (2008).
  • Wardley AM, Pivot X, Morales-Vasquez F et al. Randomized Phase II trial of first-line trastuzumab plus docetaxel and capecitabine compared with trastuzumab plus docetaxel in HER2-positive metastatic breast cancer. J. Clin. Oncol.28(6), 976–983 (2009).
  • Woyach JA, Shah MH. New therapeutic advances in the management of progressive thyroid cancer. Endocr. Relat. Cancer16(3), 715–731 (2009).
  • Shendure J, Ji H. Next-generation DNA sequencing. Nat. Biotechnol.26(10), 1135–1145 (2008).
  • Shendure J, Stewart CJ. Cancer genomes on a shoestring budget. N. Engl. J. Med.360(26), 2781–2783 (2009).
  • Holt RA, Jones SJ. The new paradigm of flow cell sequencing. Genome Res.18(6), 839–846 (2008).
  • Papewalis C, Ehlers M, Schott M. Advances in cellular therapy for the treatment of thyroid cancer. J. Oncol.2010, 179491 (2010).
  • Landriscina M, Maddalena F, Fabiano A et al. Erlotinib enhances the proapoptotic activity of cytotoxic agents and synergizes with paclitaxel in poorly-differentiated thyroid carcinoma cells. Anticancer Res.30(2), 473–480 (2010).
  • Landriscina M, Piscazzi A, Fabiano A et al. Targeting epidermal growth factor receptor 1 signaling in human thyroid-stimulating hormone-independent thyroid carcinoma FRO cells results in a more chemosensitive and less angiogenic phenotype. Thyroid19(6), 629–637 (2009).
  • Kurebayashi J, Okubo S, Yamamoto Y et al. Additive antitumor effects of gefitinib and imatinib on anaplastic thyroid cancer cells. Cancer Chemother. Pharmacol.58(4), 460–470 (2006).
  • Yeung SC, She M, Yang H et al. Combination chemotherapy including combretastatin A4 phosphate and paclitaxel is effective against anaplastic thyroid cancer in a nude mouse xenograft model. J. Clin. Endocrinol. Metab.92(8), 2902–2909 (2007).
  • Gregorc V, Santoro A, Bennicelli E et al. Phase Ib study of NGR- hTNF, a selective vascular targeting agent, administered at low doses in combination with doxorubicin to patients with advanced solid tumours. Br. J. Cancer101(2), 219–224 (2009).
  • Azad NS, Posadas EM, Kwitkowski VE et al. Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J. Clin. Oncol.26(22), 3709–3714 (2008).
  • Lam ET, Ringel MD, Kloos RT et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J. Clin. Oncol.28(14), 2323–2330 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.