336
Views
55
CrossRef citations to date
0
Altmetric
Review

Low-dose radiation therapy of cancer: role of immune enhancement

, , , , , , , & show all
Pages 791-802 | Published online: 10 Jan 2014

References

  • Hall EJ. Radiobiology for the Radiobiologist. Lippincott Williams and Wilkins, NY, USA (2000).
  • Hosoi Y, Sakamoto K. Suppressive effect of low dose total body irradiation on lung metastasis: dose dependency and effective period. Radiother. Oncol.26(2), 177–179 (1993).
  • Hosoi Y. [Antitumor effects by low dose total body irradiation]. Yakugaku Zasshi126(10), 841–848 (2006).
  • Ren H, Shen J, Tomiyama-Miyaji C et al. Augmentation of innate immunity by low-dose irradiation. Cell Immunol.244(1), 50–56 (2006).
  • Zhang Y, Liu SZ. Effect of low dose radiation on immune functions of tumor-bearing mice. Chin. J. Radiol. Health5, 235–237 (1996).
  • Liu SZ. Cancer control related to stimulation of immunity by low-dose radiation. Dose Response5(1), 39–47 (2007).
  • Rattan SI. Hormesis in aging. Ageing Res. Rev.7(1), 63–78 (2008).
  • Liu SZ, Cai L, Sun JB. Effect of low-dose radiation on repair of DNA and chromosome damage. Acta Biol. Hung.41(1–3), 149–157 (1990).
  • Cai L. Research of the adaptive response induced by low-dose radiation: where have we been and where should we go? Hum. Exp. Toxicol.18(7), 419–425 (1999).
  • Liu SZ. Radiation hormesis. A new concept in radiological science. Chin. Med. J. (Engl.)102(10), 750–755 (1989).
  • Macklis RM. Radithor and the era of mild radium therapy. JAMA264(5), 614–618 (1990).
  • Sowby FD. International Commission on Radiological Protection: 1978 Stockholm meeting. Radiology129(2), 533–535 (1978).
  • Laugier A. [The new recommendations of the International Commission on Radiological Protection.]. Ann. Radiol. (Paris)3, 663–667 (1960).
  • Pollycove M. Nonlinearity of radiation health effects. Environ. Health Perspect.106(Suppl. 1), 363–368 (1998).
  • Mifune M, Sobue T, Arimoto H, Komoto Y, Kondo S, Tanooka H. Cancer mortality survey in a spa area (Misasa, Japan) with a high radon background. Jpn J. Cancer Res.83(1), 1–5 (1992).
  • Wei LX, Zha YR, Tao ZF, He WH, Chen DQ, Yuan YL. Epidemiological investigation of radiological effects in high background radiation areas of Yangjiang, China. J. Radiat. Res. (Tokyo)31(1), 119–136 (1990).
  • Nambi KS, Soman SD. Environmental radiation and cancer in India. Health Phys.52(5), 653–657 (1987).
  • Liu SZ, Xu GZ, Li XY. A restudy of the immune functions of inhabitants in an area of high natural radioactivity in Guangdong. Chin. J. Radiol. Med. Prot.5, 124–127 (1985).
  • Miller AB, Howe GR, Sherman GJ et al. Mortality from breast cancer after irradiation during fluoroscopic examinations in patients being treated for tuberculosis. N. Engl. J. Med.321(19), 1285–1289 (1989).
  • Kendall GM, Muirhead CR, MacGibbon BH et al. Mortality and occupational exposure to radiation: first analysis of the National Registry for Radiation Workers. BMJ304(6821), 220–225 (1992).
  • Liu SZ, Cai L, Sun SQ. Induction of a cytogenetic adaptive response by exposure of rabbits to very low dose-rate γ-radiation. Int. J. Radiat. Biol.62(2), 187–190 (1992).
  • Kim CS, Kim JK, Nam SY et al. Low-dose radiation stimulates the proliferation of normal human lung fibroblasts via a transient activation of Raf and Akt. Mol. Cells24(3), 424–430 (2007).
  • Wang GJ, Cai L. Induction of cell-proliferation hormesis and cell-survival adaptive response in mouse hematopoietic cells by whole-body low-dose radiation. Toxicol Sci.53(2), 369–376 (2000).
  • Liu SZ, Jin SZ, Liu XD. Radiation-induced bystander effect in immune response. Biomed. Environ. Sci.17(1), 40–46 (2004).
  • Jin SZ, Pan XN, Wu N, Jin GH, Liu SZ. Whole-body low dose irradiation promotes the efficacy of conventional radiotherapy for cancer and possible mechanisms. Dose Response5(4), 349–358 (2007).
  • Liu SZ, SuXu, Zhang YC, Zhao Y. Signal transduction in lymphocytes after low dose radiation. Chin. Med. J. (Engl.)107(6), 431–436 (1994).
  • Chandna S, Dwarakanath BS, Khaitan D, Mathew TL, Jain V. Low-dose radiation hypersensitivity in human tumor cell lines: effects of cell-cell contact and nutritional deprivation. Radiat. Res.157(5), 516–525 (2002).
  • Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu. Rev. Immunol.22, 329–360 (2004).
  • Safwat A. The role of low-dose total body irradiation in treatment of non-Hodgkin’s lymphoma: a new look at an old method. Radiother. Oncol.56(1), 1–8 (2000).
  • Liu R, Xiong S, Zhang L, Chu Y. Enhancement of antitumor immunity by low-dose total body irradiationis associated with selectively decreasing the proportion and number of T regulatory cells. Cell Mol. Immunol.7(2), 157–162 (2010).
  • Fourquet A, Teillaud JL, Lando D, Fridman WH. Effects of low dose total body irradiation (LDTBI) and recombinant human interleukin-2 in mice. Radiother. Oncol.26(3), 219–225 (1993).
  • Zhang Y, Liu SZ. Effect of low dose radiation on immune functions of tumor-bearing mice. Chin. J. Radiol. Health5, 235–237 (1996).
  • Li XY, Chen YB, Xia FQ. Effect of low dose radiation on growth of implanted tumor and cancer induction in mice. Chin. J. Radiol. Health5, 21–23 (1996).
  • Jin AX, Wang SY, Wei DY. Mechanism of low level ionizing radiation in inhibiting B16 melanoma blood-born pulmonary metastasis. Chin. J. Radiol. Med. Prot.17, 236–239 (1997).
  • Sakamoto K, Myogin M, Hosoi Y. Fundamental and clinical studies on cancer control with total or upper-half body irradiation. J. Jpn. Soc. Ther. Radiol. Oncol.9, 161–175 (1997).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Hursting SD, Slaga TJ, Fischer SM, DiGiovanni J, Phang JM. Mechanism-based cancer prevention approaches: targets, examples, and the use of transgenic mice. J. Natl Cancer Inst.91(3), 215–225 (1999).
  • Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev. Immunol.25, 267–296 (2007).
  • Weller M, Fontana A. The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-β, T-cell apoptosis, and the immune privilege of the brain. Brain Res. Brain Res. Rev.21(2), 128–151 (1995).
  • Cromme FV, Airey J, Heemels MT et al. Loss of transporter protein, encoded by the TAP-1 gene, is highly correlated with loss of HLA expression in cervical carcinomas. J. Exp. Med.179(1), 335–340 (1994).
  • Baskar S, Ostrand-Rosenberg S, Nabavi N, Nadler LM, Freeman GJ, Glimcher LH. Constitutive expression of B7 restores immunogenicity of tumor cells expressing truncated major histocompatibility complex class II molecules. Proc. Natl Acad. Sci. USA90(12), 5687–5690 (1993).
  • Ina Y, Sakai K. Further study of prolongation of life span associated with immunological modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice: effects of whole-life irradiation. Radiat. Res.163(4), 418–423 (2005).
  • Ina Y, Sakai K. Prolongation of life span associated with immunological modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice. Radiat. Res.161(2), 168–173 (2004).
  • Shen RN, Lu L, Feng GS, Miller J, Taylor MW, Broxmeyer HE. Cure with low-dose total-body irradiation of the hematological disorder induced in mice with the Friend virus: possible mechanism involving interferon-γ and interleukin-2. Lymphokine Cytokine Res.10(1–2), 105–109 (1991).
  • Liu SZ. Nonlinear dose-response relationship in the immune system following exposure to ionizing radiation: mechanisms and implications. Nonlinearity Biol. Toxicol. Med.1(1), 71–92 (2003).
  • Hatfield P, Merrick A, Harrington K et al. Radiation-induced cell death and dendritic cells: potential for cancer immunotherapy? Clin. Oncol. (R. Coll. Radiol.)17(1), 1–11 (2005).
  • Zarcone D, Tilden AB, Lane VG, Grossi CE. Radiation sensitivity of resting and activated nonspecific cytotoxic cells of T lineage and NK lineage. Blood73(6), 1615–1621 (1989).
  • Qu Y, Zhang B, Liu S, Zhang A, Wu T, Zhao Y. 2-Gy whole-body irradiation significantly alters the balance of CD4+ CD25- T effector cells and CD4+ CD25+ Foxp3+ T regulatory cells in mice. Cell Mol. Immunol.7(6), 419–427 (2010).
  • Qu Y, Jin S, Zhang A et al. γ-ray resistance of regulatory CD4+CD25+Foxp3+ T cells in mice. Radiat. Res.173(2), 148–157 (2010).
  • Larmonier N, Fraszczak J, Lakomy D, Bonnotte B, Katsanis E. Killer dendritic cells and their potential for cancer immunotherapy. Cancer Immunol. Immunother.59(1), 1–11 (2010).
  • Bergman PJ. Cancer immunotherapy. Top. Companion Anim. Med.24(3), 130–136 (2009).
  • Hashimoto S, Shirato H, Hosokawa M et al. The suppression of metastases and the change in host immune response after low-dose total-body irradiation in tumor-bearing rats. Radiat. Res.151(6), 717–724 (1999).
  • Cheda A, Wrembel-Wargocka J, Lisiak E, Nowosielska EM, Marciniak M, Janiak MK. Single low doses of x rays inhibit the development of experimental tumor metastases and trigger the activities of NK cells in mice. Radiat. Res.161(3), 335–340 (2004).
  • Kojima S, Ishida H, Takahashi M, Yamaoka K. Elevation of glutathione induced by low-dose γ rays and its involvement in increased natural killer activity. Radiat. Res.157(3), 275–280 (2002).
  • Kojima S, Nakayama K, Ishida H. Low dose γ-rays activate immune functions via induction of glutathione and delay tumor growth. J. Radiat. Res. (Tokyo)45(1), 33–39 (2004).
  • Peters PJ, Borst J, Oorschot V et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med.173(5), 1099–1109 (1991).
  • Lord SJ, Rajotte RV, Korbutt GS, Bleackley RC. Granzyme B: a natural born killer. Immunol. Rev.193, 31–38 (2003).
  • Smyth MJ, Cretney E, Kelly JM et al. Activation of NK cell cytotoxicity. Mol. Immunol.42(4), 501–510 (2005).
  • Pandey R, Shankar BS, Sharma D, Sainis KB. Low dose radiation induced immunomodulation: effect on macrophages and CD8+ T cells. Int. J. Radiat. Biol.81(11), 801–812 (2005).
  • Liu SZ, Jin SZ, Liu XD, Sun YM. Role of CD28/B7 costimulation and IL-12/IL-10 interaction in the radiation-induced immune changes. BMC Immunol.2, 8 (2001).
  • Nathan C. Mechanisms and modulation of macrophage activation. Behring Inst. Mitt. (88), 200–207 (1991).
  • Farias-Eisner R, Sherman MP, Aeberhard E, Chaudhuri G. Nitric oxide is an important mediator for tumoricidal activity in vivo. Proc. Natl Acad. Sci. USA91(20), 9407–9411 (1994).
  • Cui S, Reichner JS, Mateo RB, Albina JE. Activated murine macrophages induce apoptosis in tumor cells through nitric oxide-dependent or -independent mechanisms. Cancer Res.54(9), 2462–2467 (1994).
  • Jenkins DC, Charles IG, Thomsen LL et al. Roles of nitric oxide in tumor growth. Proc. Natl Acad. Sci. USA92(10), 4392–4396 (1995).
  • Xie K, Fidler IJ. Therapy of cancer metastasis by activation of the inducible nitric oxide synthase. Cancer Metastasis Rev.17(1), 55–75 (1998).
  • Ibuki Y, Goto R. Contribution of inflammatory cytokine release to activation of resident peritoneal macrophages after in vivo low-dose γ-irradiation. J. Radiat. Res. (Tokyo)40(3), 253–262 (1999).
  • Shigematsu A, Adachi Y, Koike-Kiriyama N et al. Effects of low-dose irradiation on enhancement of immunity by dendritic cells. J. Radiat. Res. (Tokyo)48(1), 51–55 (2007).
  • Ishii K, Yamaoka K, Hosoi Y, Ono T, Sakamoto K. Enhanced mitogen-induced proliferation of rat splenocytes by low-dose whole-body X-irradiation. Physiol. Chem. Phys. Med. NMR27(1), 17–23 (1995).
  • Liu SZ, Han ZB, Liu WH. Changes in lymphocyte reactivity to modulatory factors following low dose ionizing radiation. Biomed. Environ. Sci.7(2), 130–135 (1994).
  • Galdiero M, Cipollaro de l’Ero G, Folgore A, Cappello M, Giobbe A, Sasso FS. Effects of irradiation doses on alterations in cytokine release by monocytes and lymphocytes. J. Med.25(1–2), 23–40 (1994).
  • Liu SZ, Zhang YC, Su X. Effect of low dose radiation on the expression of TCR/CD3 and CD25 on mouse thymocyte plasma membrane. Chin. J. Pathophysiol.11, 2–5 (1995).
  • Sambani C, Thomou H, Kitsiou P. Stimulatory effect of low dose X-irradiation on the expression of the human T lymphocyte CD2 surface antigen. Int. J. Radiat. Biol.70(6), 711–717 (1996).
  • Liu XD, Liu SZ, Ma SM, Liu Y. Expression of IL-10 in mouse spleen at mRNA and protein level after whole-body X-irradiation. Chin. J. Radiol. Med. Prot.22, 10–12 (2001).
  • Gridley DS, Pecaut MJ, Rizvi A et al. Low-dose, low-dose-rate proton radiation modulates CD4(+) T cell gene expression. Int. J. Radiat. Biol.85(3), 250–261 (2009).
  • Shankar B, Pandey R, Sainis K. Radiation-induced bystander effects and adaptive response in murine lymphocytes. Int. J. Radiat. Biol.82(8), 537–548 (2006).
  • Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol.6(4), 345–352 (2005).
  • Ono M, Yaguchi H, Ohkura N et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature446(7136), 685–689 (2007).
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155(3), 1151–1164 (1995).
  • Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol.2(6), 389–400 (2002).
  • Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol.9(3), 239–244 (2008).
  • Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat. Rev. Immunol.8(7), 523–532 (2008).
  • von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat. Immunol.6(4), 338–344 (2005).
  • Valzasina B, Piconese S, Guiducci C, Colombo MP. Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25- lymphocytes is thymus and proliferation independent. Cancer Res.66(8), 4488–4495 (2006).
  • Nizar S, Copier J, Meyer B et al. T-regulatory cell modulation: the future of cancer immunotherapy? Br. J. Cancer100(11), 1697–1703 (2009).
  • Weng L, Williams RO, Vieira PL, Screaton G, Feldmann M, Dazzi F. The therapeutic activity of low-dose irradiation on experimental arthritis depends on the induction of endogenous regulatory T cell activity. Ann. Rheum. Dis.69(8), 1519–1526 (2010).
  • Nakatsukasa H, Tsukimoto M, Tokunaga A, Kojima S. Repeated γ irradiation attenuates collagen-induced arthritis via up-regulation of regulatory T cells but not by damaging lymphocytes directly. Radiat. Res.174(3), 313–324
  • Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity30(5), 636–645 (2009).
  • DeBlaker-Hohe DF, Yamauchi A, Yu CR, Horvath-Arcidiacono JA, Bloom ET. IL-12 synergizes with IL-2 to induce lymphokine-activated cytotoxicity and perforin and granzyme gene expression in fresh human NK cells. Cell Immunol.165(1), 33–43 (1995).
  • Miller GM, Kim DW, Andres ML, Green LM, Gridley DS. Changes in the activation and reconstitution of lymphocytes resulting from total-body irradiation correlate with slowed tumor growth. Oncology65(3), 229–241 (2003).
  • Fu HQ, Li XY, Chen YB. Studies on the mechanism of the suppressive effect of low dose radiation on cancer metastasis. J. Radiat. Res. Radiat. Proc.15, 41–43 (1997).
  • Fu HQ, Li XY, Li YJ. Low dose radiation suppresses dissemination of cancer cells in mice. Chin. J. Radiol. Med. Prot.16, 50–53 (1996).
  • al-Sarireh B, Eremin O. Tumour-associated macrophages (TAMS): disordered function, immune suppression and progressive tumour growth. J. R. Coll. Surg. Edinb.45(1), 1–16 (2000).
  • Belardelli F, Ferrantini M. Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol.23(4), 201–208 (2002).
  • Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern. Med. Rev.8(3), 223–246 (2003).
  • Liu SZ, Zhang YC, Mu Y, Su X, Liu JX. Thymocyte apoptosis in response to low-dose radiation. Mutat. Res.358(2), 185–191 (1996).
  • Sun YM, Liu SZ. Changes in TNFα expression in mouse peritoneal macrophages after whole body x-ray irradiation. J. Radiat. Res.18, 235–239 (2000).
  • Yang YG, Liu SZ. Effect of whole-body x-irradiation on IFNγ production by splenocytes. J. N. Bethune Univ. Med. Sci.15(Suppl.), 11–13 (1989).
  • Hayase H, Ohshima Y, Takahashi M, Kojima S. The enhancement of Th1 immunity and the suppression of tumor growth by low dose γ radiation. IJLR5, 275–289 (2008).
  • Chen ZY, Zhang M, Liu JX. Effects of low dose irradiation on splenic macrophage functions in mice. J. Radiat. Res.13, 187–189 (1996).
  • Shen RN, Lu L, Kaiser HE, Broxmeyer HE. Murine AIDS cured by low dosage total body irradiation. Adv. Exp. Med. Biol.407, 451–458 (1997).
  • Shen RN, Lu L, Harrington MA et al. Effect of split low dose total body irradiation on SFFV mRNA, genomic DNA and protein expression in mice infected with the Friend virus complex. Leukemia5(3), 225–229 (1991).
  • Shen RN, Lu L, Kaiser HE, Broxmeyer HE. Curative effect of split low dosage total-body irradiation on murine AIDS induced by Friend virus: the results and the possible mechanism. In Vivo10(2), 191–199 (1996).
  • Zhang Y, Lu Z, Li XY. Effect of combined whole-body low dose irradiation and chemotherapy on growth, metastasis and immune functions in tumor bearing mice. Radiate Prot.19, 127–131 (1999).
  • Zhang Y, Li XY, Liu SZ. Effect of low dose radiation on the tumor suppressive action of chemotherapeutic drugs. Chin. J. Radiol. Med. Prot.17, 112–114 (1997).
  • Zhang Y, Liu SZ. Enhancing effect of low dose radiation on tumor suppressive action of chemotherapy and its mechanisms. J. Radiat. Res. Radiat. Proc.15, 179–184 (1997).
  • Zhang Y, Lu Z, Li XY. Influence of low dose radiation on pulmonary metastasis of Lewis lung carcinoma in mice. J. N. Bethune Univ. Med. Sci.24, 559–562 (1998).
  • Mitchel RE, Jackson JS, Morrison DP, Carlisle SM. Low doses of radiation increase the latency of spontaneous lymphomas and spinal osteosarcomas in cancer-prone, radiation-sensitive Trp53 heterozygous mice. Radiat. Res.159(3), 320–327 (2003).
  • Mitchel RE, Jackson JS, McCann RA, Boreham DR. The adaptive response modifies latency for radiation-induced myeloid leukemia in CBA/H mice. Radiat. Res.152(3), 273–279 (1999).
  • Lin CC, Wang TE, Liu CY et al. Potentiation of the immunotherapeutic effect of autologous dendritic cells by pretreating hepatocellular carcinoma with low-dose radiation. Clin. Invest. Med.31(3), E150–E159 (2008).
  • Li XJ, Fu SB, Yang Y. Effect of low dose radiation on immune functions 6 months after high dose irradiation in tumor bearing mice. J. Expt. Oncol.13, 241–242 (1999).
  • Li XY, Li XJ, Zhang Y. Suppressive effect of low dose radiation on thymic lymphoma induced in mice by carcinogenic doses of radiation. China Academic Lit. (Sci. Tech. Express)4, 1406–1407 (1998).
  • Bhattacharjee D. Role of radioadaptation on radiation-induced thymic lymphoma in mice. Mutat. Res.358(2), 231–235 (1996).
  • Bartstra RW, Bentvelzen PA, Zoetelief J, Mulder AH, Broerse JJ, van Bekkum DW. Induction of mammary tumors in rats by single-dose γ irradiation at different ages. Radiat. Res.150(4), 442–450 (1998).
  • Bartstra RW, Bentvelzen PA, Zoetelief J, Mulder AH, Broerse JJ, van Bekkum DW. The influence of estrogen treatment on induction of mammary carcinoma in rats by single-dose g irradiation at different ages. Radiat. Res.150(4), 451–458 (1998).
  • White RG, Raabe OG, Culbertson MR, Parks NJ, Samuels SJ, Rosenblatt LS. Bone sarcoma characteristics and distribution in beagles fed strontium-90. Radiat. Res.136(2), 178–189 (1993).
  • White RG, Raabe OG, Culbertson MR, Parks NJ, Samuels SJ, Rosenblatt LS. Bone sarcoma characteristics and distribution in beagles injected with radium-226. Radiat. Res.137(3), 361–370 (1994).
  • Lundgren DL, Hahn FF, Diel JH. Repeated inhalation exposure of rats to aerosols of 144CeO2. II. Effects on survival and lung, liver, and skeletal neoplasms. Radiat. Res.132(3), 325–333 (1992).
  • Hashimoto S. [Effects of low-dose total body irradiation (TBI) on tumor-bearing rats]. Nippon Igaku Hoshasen Gakkai Zasshi57(7), 418–424 (1997).
  • Meerwaldt JH, Carde P, Burgers JM et al. Low-dose total body irradiation versus combination chemotherapy for lymphomas with follicular growth pattern. Int. J. Radiat. Oncol. Biol. Phys.21(5), 1167–1172 (1991).
  • Richaud PM, Soubeyran P, Eghbali H et al. Place of low-dose total body irradiation in the treatment of localized follicular non-Hodgkin’s lymphoma: results of a pilot study. Int. J. Radiat. Oncol. Biol. Phys.40(2), 387–390 (1998).
  • Choi NC, Timothy AR, Kaufman SD, Carey RW, Aisenberg AC. Low dose fractionated whole body irradiation in the treatment of advanced non-Hodgkin’s lymphoma. Cancer43(5), 1636–1642 (1979).
  • Chaffey JT, Rosenthal DS, Moloney WC, Hellman S. Total body irradiation as treatment for lymphosarcoma. Int. J. Radiat. Oncol. Biol. Phys.1(5–6), 399–405 (1976).
  • Cuttler J, Pollycove M, Welsh J. Application of low doses of radiation for curing cancer. Can. Nucl. Soc. Bull.21(2), 45 (2000).
  • Takai Y, Yamada S, Nemoto K. Anti-tumor effect of low dose total or half-body irradiation and changes in the functional subset of peripheral blood lymphocytes in non-Hodgkin’s lymphoma patients after TBI (HBI). Proceedings of: Low Dose irradiation and Biological Defence Mechanisms, Kyoto, July 12–16. Elsevier Science BV, Amsterdam, The Netherlands, 113–116 (1992).
  • Wakeford R. Radiation in the workplace-a review of studies of the risks of occupational exposure to ionising radiation. J. Radiol. Prot.29(2A), A61–A79 (2009).
  • Little MP. Cancer and non-cancer effects in Japanese atomic bomb survivors. J. Radiol. Prot.29(2A), A43–A59 (2009).
  • Chodick G, Bekiroglu N, Hauptmann M et al. Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am. J. Epidemiol.168(6), 620–631 (2008).
  • Prasad KN, Cole WC, Hasse GM. Health risks of low dose ionizing radiation in humans: a review. Exp. Biol. Med. (Maywood)229(5), 378–382 (2004).
  • Farooque A, Singh S, Adhikari JS, Dwarakanath BS. Role of T-regulatory cells (CD4+CD25highFoxP3+), Th1, Th2 and Th3 cytokines in the radiosensization of Ehrlich ascites tumor by the glycolytic inhibitor 2deoxy-D-glucose (2-DG). Presented at: XXIV International Congress ‘Cytometry in the Age of Systems Biology’. Budapest, Hungry, 17–21 May 2008.
  • Gupta S, Farooque A, Adhikari JS, Singh S, Dwarakanath BS. Enhancement of radiation and chemotherapeutic drug responses by 2-deoxy-D-glucose in animal tumors. J. Cancer Res. Ther.5(Suppl. 1), S16–S20 (2009).
  • Sakai K, Hoshi Y, Nomura T et al. Suppression of carcinogenic processes in mice by chronic low dose rate γ-irradiation. Int. J. Low. Radiat.1, 142–146 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.