170
Views
13
CrossRef citations to date
0
Altmetric
Review

Predictive markers and driving factors behind Richter syndrome development

, , &
Pages 433-442 | Published online: 10 Jan 2014

References

  • Richter MN. Generalized reticular cell sarcoma of lymph nodes associated with lymphatic leukaemia. Am. J. Pathol.4(4), 285–292 (1928).
  • Hallek M, Cheson BD, Catovsky D et al. International Workshop on Chronic Lymphocytic Leukemia. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute Working Group 1996 guidelines. Blood111(12), 5446–5456 (2008).
  • Rossi D, Cerri M, Capello D, Deambrogi C et al. Biological and clinical risk factors of chronic lymphocytic leukaemia transformation to Richter syndrome. Br. J. Haematol.142(2), 202–215 (2008).
  • Tsimberidou A-M, Keating MJ. Richter syndrome. Biology, incidence, and therapeutic strategies. Cancer103(2), 216–228 (2005).
  • Maddocks-Christianson K, Slager SL, Zent CS et al. Risk factors for development of a second malignancy in patients with chronic lymphocytic leukaemia. Br. J. Haematol.139(3), 398–404 (2007).
  • Cherepakhin V, Baird SM, Meisenholder GW, Kipps TJ. Common clonal origin of chronic lymphocytic leukemia and high grade lymphoma of Richter’s syndrome. Blood82(10), 3141–3147 (1993).
  • Matolcsy A, Inghirami G, Knowles DM. Molecular genetic demonstration of the diverse evolution of Richter’s syndrome (chronic lymphocytic leukemia and subsequent large cell lymphoma). Blood83(5), 1363–1372 (1994).
  • Nakamura N, Kuze T, Hashimoto Y et al. Analysis of the immunoglobulin heavy chain gene of secondary diffuse large B-cell lymphoma that subsequently developed in four cases with B-cell chronic lymphocytic leukemia or lymphoplasmacytoid lymphoma (Richter syndrome). Pathol. Int.50(8), 636–643 (2000).
  • Timár B, Fülöp Z, Csernus B et al. Relationship between the mutational status of VH genes and pathogenesis of diffuse large B-cell lymphoma in Richter’s syndrome. Leukemia18(2), 326–330 (2004).
  • Smit LA, van Maldegem F, Langerak AW et al. Antigen receptors and somatic hypermutation in B-cell chronic lymphocytic leukemia with Richter’s transformation. Haematologica91(7), 903–911 (2006).
  • Mao Z, Quintanilla-Martinez L, Raffeld M et al. IgVH mutational status and clonality analysis of Richter’s transformation: diffuse large B-cell lymphoma and Hodgkin lymphoma in association with B-cell chronic lymphocytic leukemia (B-CLL) represent 2 different pathways of disease evolution. Am. J. Surg. Pathol.31(10), 1605–1614 (2007).
  • O’Brien SM, Kantarjian HM, Thomas DA et al. Alemtuzumab as treatment for residual disease after chemotherapy in patients with chronic lymphocytic leukemia. Cancer98(12), 2657–2663 (2003).
  • Janssens A, Berth M, De Paepe P et al. EBV negative Richter’s syndrome from a coexistent clone after salvage treatment with alemtuzumab in a CLL patient. Am. J. Hematol.81(9), 706–712 (2006).
  • Rossi D, Berra E, Cerri M et al. Aberrant somatic hypermutation in transformation of follicular lymphoma and chronic lymphocytic leukemia to diffuse large B-cell lymphoma. Haematologica91(10), 1405–1409 (2006).
  • Montoto S, Davies AJ, Matthews J et al. Risk and clinical implications of transformation of follicular lymphoma to diffuse large B-cell lymphoma. J. Clin. Oncol.25(17), 2426–2433 (2007).
  • Armitage JO, Dick FR, Corder MP. Diffuse histiocytic lymphoma complicating chronic lymphocytic leukemia. Cancer41(2), 422–427 (1978).
  • Ott MM, Ott G, Roblick U et al. Localized gastric non-Hodgkin’s lymphoma of high-grade malignancy in patients with pre-existing chronic lymphocytic leukemia or immunocytoma. Leukemia9(4), 609–614 (1995).
  • Ratnavel RC, Dunn-Walters DK, Boursier L et al. B-cell lymphoma associated with chronic lymphocytic leukaemia: two cases with contrasting aggressive and indolent behaviour. Br. J. Dermatol.140(4), 708–714 (1999).
  • Parrens M, Sawan B, Dubus P et al. Primary digestive Richter’s syndrome. Mod. Pathol.14(5), 452–457 (2001).
  • Omoti CE, Omoti AE. Richter syndrome: a review of clinical, ocular, neurological and other manifestations. Br. J. Haematol.142(5), 709–716 (2008).
  • Bruzzi JF, Macapinlac H, Tsimberidou AM et al. Detection of Richter’s transformation of chronic lymphocytic leukemia by PET/CT. J. Nucl. Med.47(8), 1267–1273 (2006).
  • Matolcsy A, Chadburn A, Knowles DM. De novo CD5-positive and Richter’s syndrome-associated diffuse large B cell lymphomas are genotypically distinct. Am. J. Pathol.147(1), 207–216 (1995).
  • Hans CP, Weisenburger DD, Greiner TC et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood103(1), 275–282 (2004).
  • Tsimberidou A-M, O’Brien S, Khouri I et al. Clinical outcomes and prognostic factors in patients with Richter’s syndrome treated with chemotherapy or chemoimmunotherapy with or without stem-cell transplantation. J. Clin. Oncol.24(15), 2343–2351 (2006).
  • Rossi D, Spina V, Deambrogi C et al. The genetics of Richter syndrome identifies disease heterogeneity and is an independent predictor of survival post transformation. Presented at: 15th Congress of the European Hematology Association. Barcelona, Spain, 10–13 June 2010.
  • Rossi D, Rasi S, Capello D, Gaidano G. Prognostic assessment of BCL2–938C>A polymorphism in chronic lymphocytic leukemia. Blood111(1), 466–468 (2008).
  • Rossi D, Zucchetto A, Rossi FM et al. CD49d expression is an independent risk factor of progressive disease in early stage chronic lymphocytic leukemia. Haematologica93(10), 1575–1579 (2008).
  • Rossi D, Spina V, Cerri M et al. Stereotyped B-cell receptor is an independent risk factor of chronic lymphocytc leukemia transformation to Richter syndrome. Clin. Cancer Res.15(13), 4415–4422 (2009).
  • Rossi D, Lobetti Bodoni C, Genuardi E et al. Telomere length is an independent predictor of survival, treatment requirement and Richter’s syndrome transformation in chronic lymphocytic leukemia. Leukemia23(6), 1062–1072 (2009).
  • Calin GA, Ferracin M, Cimmino A et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med.353(17), 1793–1801 (2005).
  • Kienle DL, Korz C, Hosch B et al. Evidence for distinct pathomechanisms in genetic subgroups of chronic lymphocytic leukemia revealed by quantitative expression analysis of cell cycle, activation, and apoptosis-associated genes. J. Clin. Oncol.23(16), 3780–3792 (2005).
  • Klein U, Lia M, Crespo M et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell17(1), 28–40 (2010).
  • Starostik P, Patzner J, Greiner A et al. Gastric marginal zone B-cell lymphomas of MALT type develop along 2 distinct pathogenetic pathways. Blood99(1), 3–9 (2002).
  • Deambrogi C, Cresta S, Cerri M et al. 14q32 translocations and risk of Richter’s transformation in chronic lymphocytic leukaemia. Br. J. Haematol.144(1), 131–133 (2009).
  • Stamatopoulos K, Belessi C, Moreno C et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood109(1), 259–270 (2007).
  • Bomben R, Dal Bo M, Capello D et al. Molecular and clinical features of chronic lymphocytic leukaemia with stereotyped B cell receptors: results from an Italian multicenter study. Br. J. Haematol.144(4), 492–506 (2009).
  • Sutton LA, Kostareli E, Hadzidimitriou A et al. Extensive intraclonal diversification in a subgroup of chronic lymphocytic leukemia patients with stereotyped IGHV4–34 receptors: implications for ongoing interactions with antigen. Blood114(20), 4460–4468 (2009).
  • Darzentas N, Hadzidimitriou A, Murray F et al. A different ontogenesis for chronic lymphocytic leukemia cases carrying stereotyped antigen receptors: molecular and computational evidence. Leukemia24(1), 125–132 (2010).
  • Caligaris-Cappio F, Ghia P. Novel insights in chronic lymphocytic leukemia: are we getting closer to understanding the pathogenesis of the disease? J. Clin. Oncol.26(27), 4497–4503 (2008).
  • Chu CC, Catera R, Zhang L et al. Many chronic lymphocytic leukemia antibodies recognize apoptotic cells with exposed nonmuscle myosin heavy chain IIA: implications for patient outcome and cell of origin. Blood115(19), 3907–3915 (2010).
  • Del Poeta G, Maurillo L, Venditti A et al. Clinical significance of CD38 expression in chronic lymphocytic leukemia. Blood98(9), 2633–2639 (2001).
  • Ibrahim S, Keating M, Do KA et al. CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood98(1), 181–186 (2001).
  • Jaksic O, Paro MM, Kardum Skelin I, Kusec R, Pejsa V, Jaksic B. CD38 on B-cell chronic lymphocytic leukemia cells has higher expression in lymph nodes than in peripheral blood or bone marrow. Blood103(5), 1968–1969 (2004).
  • Deaglio S, Vaisitti T, Aydin S et al. CD38 and ZAP-70 are functionally linked and mark CLL cells with high migratory potential. Blood110(12), 4012–4021 (2007).
  • Deaglio S, Capobianco A, Bergui L et al. CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells. Blood102(6), 2146–2155 (2003).
  • Deaglio S, Vaisitti T, Aydin S, Ferrero E, Malavasi F. In-tandem insights from basic science combined with clinical research: CD38 as both marker and key component of the pathogenetic network underlying chronic lymphocytic leukemia. Blood108(4), 1135–1144 (2006).
  • Patten PE, Buggins AG, Richards J et al. CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment. Blood111(10), 5173–5181 (2008).
  • Kishimoto H, Hoshino S, Ohori M et al. Molecular mechanisms of human CD38 gene expression by retinoic acid. Identification of retinoic acid response element in the first intron. J. Biol. Chem.273(25), 15429–15434 (1998).
  • Ferrero E, Saccucci F, Malavasi F. The human CD38 gene: polymorphism, CpG island, and linkage to the CD157 (BST-1) gene. Immunogenetics49(7–8), 597–604 (1999).
  • Aydin S, Rossi D, Bergui L et al.CD38 gene polymorphism and chronic lymphocytic leukemia: a role in Richter syndrome? Blood111(12), 5646–5653 (2008).
  • Rasi S, Spina V, Bruscaggin A et al. A variant of the LRP4 gene affects the risk of chronic lymphocytic leukaemia transformation to Richter syndrome. Br. J. Haematol.152(3), 284–294 (2011).
  • Lu D, Zhao Y, Tawatao R et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA101(9), 3118–3123 (2004).
  • Li Y, Pawlik B, Elcioglu N et al. LRP4 mutations alter Wnt/β-catenin signaling and cause limb and kidney malformations in Cenani–Lenz syndrome. Am. J. Hum. Genet.86(5), 696–706 (2010).
  • Kim NW, Piatyszek MA, Prowse KR et al. Specific association of human telomerase activity with immortal cells and cancer. Science266(5193), 2011–2015 (1994).
  • Gaidano G, Ballerini P, Gong JZ et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA88(12), 5413–5417 (1991).
  • Lee JN, Giles F, Huh YO et al. Molecular differences between small and large cells in patients with chronic lymphocytic leukemia. Eur. J. Haematol.71(4), 235–242 (2003).
  • Lo Coco F, Gaidano G, Louie DC, Offit K, Chaganti RS, Dalla-Favera R. p53 mutations are associated with histologic transformation of follicular lymphoma. Blood82(8), 2289–2295 (1993).
  • Lossos IS. Higher-grade transformation of follicular lymphoma – a continuous enigma. Leukemia19(8), 1331–1333 (2005).
  • Pasqualucci L, Neumeister P, Goossens T et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature412(6844), 341–346 (2001).
  • Gaidano G, Pasqualucci L, Capello D et al. Aberrant somatic hypermutation in multiple subtypes of AIDS-associated non-Hodgkin lymphoma. Blood102(5), 1833–1841 (2003).
  • Libra M, Capello D, Gloghini A et al. Analysis of aberrant somatic hypermutation (SHM) in non-Hodgkin lymphomas of patients with HCV infection. J. Pathol.206(1), 87–91 (2005).
  • Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat. Rev. Immunol.8(1), 22–33 (2008).
  • Pasqualucci L, Bhagat G, Jankovic M et al. AID is required for germinal center-derived lymphomagenesis. Nat. Genetics40(1), 108–112 (2008).
  • Reiniger L, Bödör C, Bognár Á et al. Richter’s and prolymphocytic transformation of chronic lymphocytic leukemia are associated with high mRNA expression of activation-induced cytidine deaminase and aberrant somatic hypermutation. Leukemia20(6), 1089–1095 (2006).
  • Han T, Sadamori N, Ozer H et al. Cytogenetic studies in 77 patients with chronic lymphocytic leukemia: correlations with clinical, immunologic, and phenotypic data. J. Clin. Oncol.2(10), 1121–1132 (1984).
  • Hébert J, Jonveaux P, d’Agay MF, Berger R. Cytogenetic studies in patients with Richter’s syndrome. Cancer Genet. Cytogenet.73(1), 65–68 (1994).
  • Brynes RK, McCourty A, Sun NC, Koo CH. Trisomy 12 in Richter’s transformation of chronic lymphocytic leukemia. Am. J. Clin. Pathol.104(2), 199–203 (1995).
  • Caraway NP, Du Y, Zhang H-Z, Hayes K, Glassman AB, Katz RL. Numeric chromosomal abnormalities in small lymphocytic and transformed large cell lymphomas detected by fluorescence in situ hybridization of fine-needle aspiration biopsies. Cancer90(2), 126–132 (2000).
  • Santulli B, Kazmierczak B, Napolitano R et al. A 12q13 translocation involving the HMGI-C gene in Richter transformation of a chronic lymphocytic leukemia. Cancer Genet. Cytogenet.119(1), 70–73 (2000).
  • Zenz T, Mertens D, Döhner H, Stilgenbauer S. Molecular diagnostics in chronic lymphocytic leukemia – pathogenetic and clinical implications. Leuk. Lymphoma49(5), 864–873 (2008).
  • Lenz G, Staudt LM. Aggressive lymphomas. N. Engl. J. Med.362(15), 1417–1429 (2010).
  • Beà S, López-Guillermo A, Ribas M et al. Genetic imbalances in progressed B-cell chronic lymphocytic leukemia and transformed large-cell lymphoma (Richter’s syndrome). Am. J. Pathol.161(3), 957–968 (2002).
  • Scandurra M, Rossi D, Deambrogi C et al. Genomic profiling of Richter’s syndrome: recurrent lesions and differences with de novo diffuse large B-cell lymphomas. Hematol. Oncol.28(2), 62–67 (2010).
  • Cohen Y, Da’as N, Libster D, Amir G, Berrebi A, Polliack A. Large-cell transformation of chronic lymphocytic leukemia and follicular lymphoma during or soon after treatment with fludarabine-rituximab containing regimens: natural history or related therapy complication. Eur. J. Hematol.68(2), 80–83 (2002).
  • Thornton PD, Bellas C, Santon A et al. Richter’s transformation of chronic lymphocytic leukemia. The possible role of fludarabine and the Epstein–Barr virus in its pathogenesis. Leukemia Res.29(4), 389–395 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.