737
Views
18
CrossRef citations to date
0
Altmetric
Editorial

PET imaging of gliomas using novel tracers: a sleeping beauty waiting to be kissed

, , &
Pages 609-613 | Published online: 10 Jan 2014

References

  • Roelcke U, Leenders KL. PET in neuro-oncology. J. Cancer Res. Clin. Oncol.127(1), 2–8 (2001).
  • Jemal A, Murray T, Ward E et al. Cancer statistics, 2005. CA Cancer J. Clin.55(1), 10–30 (2005).
  • Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol.64(6), 479–489 (2005).
  • Benard F, Romsa J, Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin. Nucl. Med.33(2), 148–162 (2003).
  • Miwa K, Shinoda J, Yano H et al. Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a PET and MR fusion image study. J. Neurol. Neurosurg. Psychiatry75(10), 1457–1462 (2004).
  • Grosu AL, Weber WA, Astner ST et al.11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.66(2), 339–344 (2006).
  • Kanai Y, Segawa H, Miyamoto K et al. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J. Biol. Chem.273(37), 23629–23632 (1998).
  • Langen KJ, Broer S. Molecular transport mechanisms of radiolabeled amino acids for PET and SPECT. J. Nucl. Med.45(9), 1435–1436 (2004).
  • Langen KJ, Muhlensiepen H, Holschbach M et al. Transport mechanisms of 3-[123I]iodo-α-methyl-L-tyrosine in a human glioma cell line: comparison with [3H]methyl-L-methionine. J. Nucl. Med.41(7), 1250–1255 (2000).
  • Weber WA, Wester HJ, Grosu AL et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur. J. Nucl. Med.27(5), 542–549 (2000).
  • Langen KJ, Jarosch M, Muhlensiepen H et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl. Med. Biol.30(5), 501–508 (2003).
  • Pauleit D, Floeth F, Tellmann L et al. Comparison of O-(2–18F-fluoroethyl)-L-tyrosine PET and 3–123I-iodo-a-methyl-L-tyrosine SPECT in brain tumors. J. Nucl. Med.45(3), 374–381 (2004).
  • Popperl G, Gotz C, Rachinger W et al. Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur. J. Nucl. Med. Mol. Imaging31(11), 1464–1470 (2004).
  • Goldman S, Levivier M, Pirotte B et al. Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J. Nucl. Med.38(9), 1459–1462 (1997).
  • Pirotte B, Goldman S, David P et al. Stereotactic brain biopsy guided by positron emission tomography (PET) with [F-18]fluorodeoxyglucose and [C-11]methionine. Acta Neurochir. Suppl.68, 133–138 (1997).
  • Pirotte B, Goldman S, Dewitte O et al. Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J. Neurosurg.104(2), 238–253 (2006).
  • Voges J, Herholz K, Holzer T et al.11C-methionine and 18F-2-fluorodeoxyglucose positron emission tomography: a tool for diagnosis of cerebral glioma and monitoring after brachytherapy with 125I seeds. Stereotact. Funct. Neurosurg.69(1–4 Pt 2), 129–135 (1997).
  • Tsuyuguchi N, Takami T, Sunada I et al. Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery – in malignant glioma. Ann. Nucl. Med.18(4), 291–296 (2004).
  • Van Laere K, Ceyssens S, Van Calenbergh F et al. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur. J. Nucl. Med. Mol. Imaging32(1), 39–51 (2005).
  • Rachinger W, Goetz C, Popperl G et al. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery57(3), 505–511 (2005).
  • Nariai T, Tanaka Y, Wakimoto H et al. Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J. Neurosurg.103(3), 498–507 (2005).
  • Wurker M, Herholz K, Voges J et al. Glucose consumption and methionine uptake in low-grade gliomas after iodine-125 brachytherapy. Eur. J. Nucl. Med.23(5), 583–586 (1996).
  • Wyss M, Hofer S, Bruehlmeier M et al. Early metabolic responses in temozolomide treated low-grade glioma patients. J. Neurooncol.95(1), 87–93 (2009).
  • Pauleit D, Floeth F, Hamacher K et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain128(Pt 3), 678–687 (2005).
  • Herholz K, Holzer T, Bauer B et al.11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology50(5), 1316–1322 (1998).
  • Jacobs AH, Kracht LW, Gossmann A et al. Imaging in neurooncology. NeuroRx2(2), 333–347 (2005).
  • Floeth FW, Pauleit D, Wittsack H-J et al. Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. J. Neurosurg.102(2), 318–327 (2005).
  • Levivier M, Goldman S, Pirotte B et al. Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F]fluorodeoxyglucose. J. Neurosurg.82(3), 445–452 (1995).
  • Kracht LW, Miletic H, Busch S et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin. Cancer Res.10(21), 7163–7170 (2004).
  • Pirotte B, Goldman S, Massager N et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J. Nucl. Med.45(8), 1293–1298 (2004).
  • Ogawa T, Shishido F, Kanno I et al. Cerebral glioma: evaluation with methionine PET. Radiology186(1), 45–53 (1993).
  • Nuutinen J, Sonninen P, Lehikoinen P et al. Radiotherapy treatment planning and long-term follow-up with [11C]methionine PET in patients with low-grade astrocytoma. Int. J. Radiat. Oncol. Biol. Phys.48(1), 43–52 (2000).
  • Popperl G, Goldbrunner R, Gildehaus FJ et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur. J. Nucl. Med. Mol. Imaging32(9), 1018–1025 (2005).
  • Popperl G, Gotz C, Rachinger W et al. Serial O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur. J. Nucl. Med. Mol. Imaging33(7), 792–800 (2006).
  • Brock CS, Young H, O’Reilly SM et al. Early evaluation of tumour metabolic response using [18F]fluorodeoxyglucose and positron emission tomography: a pilot study following the Phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas. Br. J. Cancer82(3), 608–615 (2000).
  • De Witte O, Levivier M, Violon P et al. Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery39(3), 470–476 (1996).
  • Ceyssens S, Van Laere K, de Groot T et al. [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am. J. Neuroradiol.27(7), 1432–1437 (2006).
  • De Witte O, Goldberg I, Wikler D et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J. Neurosurg.95(5), 746–750 (2001).
  • Ribom D, Smits A. Baseline 11C-methionine PET reflects the natural course of grade 2 oligodendrogliomas. Neurol. Res.27(5), 516–521 (2005).
  • Smits A, Westerberg E, Ribom D. Adding 11C-methionine PET to the EORTC prognostic factors in grade 2 gliomas. Eur. J. Nucl. Med. Mol. Imaging35(1), 65–71 (2008).
  • Thiele F, Ehmer J, Piroth MD et al. The quantification of dynamic FET PET imaging and correlation with the clinical outcome in patients with glioblastoma. Phys. Med. Biol.54(18), 5525–5539 (2009).
  • Popperl G, Kreth FW, Herms J et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J. Nucl. Med.47(3), 393–403 (2006).
  • Popperl G, Kreth FW, Mehrkens JH et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur. J. Nucl. Med. Mol. Imaging34(12), 1933–1942 (2007).
  • Alavi JB, Alavi A, Chawluk J et al. Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer62(6), 1074–1078 (1988).
  • Kim CK, Alavi JB, Alavi A, Reivich M. New grading system of cerebral gliomas using positron emission tomography with F-18 fluorodeoxyglucose. J. Neurooncol.10(1), 85–91 (1991).
  • Barker FG, 2nd, Chang SM, Valk PE, Pounds TR, Prados MD. 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer79(1), 115–126 (1997).
  • Padma MV, Said S, Jacobs M et al. Prediction of pathology and survival by FDG PET in gliomas. J. Neurooncol.64(3), 227–237 (2003).
  • Bruehlmeier M, Roelcke U, Schubiger PA, Ametamey SM. Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J. Nucl. Med.45(11), 1851–1859 (2004).
  • Choi SJ, Kim JS, Kim JH et al. [18F]3´-deoxy-3´-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur. J. Nucl. Med. Mol. Imaging32(6), 653–659 (2005).
  • Chen W, Cloughesy T, Kamdar N et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J. Nucl. Med.46(6), 945–952 (2005).
  • Chen W, Delaloye S, Silverman DH et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J. Clin. Oncol.25(30), 4714–4721 (2007).
  • Beer AJ, Schwaiger M. Imaging of integrin αvβ3 expression. Cancer Metastasis Rev.27(4), 631–644 (2008).
  • Schnell O, Krebs B, Wagner E et al. Expression of integrin αvβ3 in gliomas correlates with tumor grade and is not restricted to tumor vasculature. Brain Pathol.18(3), 378–386 (2008).
  • Beer AJ, Haubner R, Sarbia M et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clin. Cancer Res.12(13), 3942–3949 (2006).
  • Beer AJ, Grosu AL, Carlsen J et al. [18F]galacto-RGD positron emission tomography for imaging of αvβ3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin. Cancer Res.13(22 Pt 1), 6610–6616 (2007).
  • Haubner R, Weber WA, Beer AJ et al. Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Med.2(3), e70 (2005).
  • Schnell O, Krebs B, Carlsen J et al. Imaging of integrin αvβ3 expression in patients with malignant glioma by [18F] galacto-RGD positron emission tomography. Neuro. Oncol.11(6), 861–870 (2009).
  • Judenhofer MS, Wehrl HF, Newport DF et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat. Med.14(4), 459–465 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.