112
Views
19
CrossRef citations to date
0
Altmetric
Perspective

Multigene assays and isolated tumor cells for early breast cancer treatment: time for bionetworks

, &
Pages 1187-1195 | Published online: 10 Jan 2014

References

  • Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J. Clin. DOI: doi: 10.3322/caac.20073 (2010) (Epub ahead of print).
  • Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomized trials. Lancet365, 1687–1717 (2005).
  • Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thürlimann B, Senn HJ; Panel members. Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann. Oncol.20(8), 1319–1329 (2009).
  • Stafford RS, Wagner TH, Lavori PW. New, but not improved? Incorporating comparative-effectiveness information into FDA labeling. N. Engl. J. Med.361(13), 1230–1233 (2009).
  • Green FL, Page DL, Fleming ID et al.AJCC Cancer Staging Manual (6th Edition). American Joint Commission on Cancer, IL, USA (2002).
  • de Boer M, van Deurzen CH, van Dijck JA et al. Micrometastases or isolated tumor cells and the outcome of breast cancer. N. Engl. J. Med.361(7), 653–663 (2009).
  • Roukos DH. Isolated tumor cells in breast cancer. N. Engl. J. Med.361, 1994–1995 (2009).
  • Chen SL, Hoehne FM, Giuliano AE. The prognostic significance of micrometastases in breast cancer: a SEER population-based analysis. Ann. Surg. Oncol.14(12), 3378–3384 (2007).
  • Cote RJ, Peterson HF, Chaiwun B et al. Role of immunohistochemical detection of lymph-node metastases in management of breast cancer. Lancet354, 896–900 (1999).
  • de Mascarel I, Bonichon F, Coindre JM, Trojani M. Prognostic significance of breast cancer axillary lymph node micrometastases assessed by two special techniques: revaluation with longer follow-up. Br. J. Cancer66, 523–527 (1992).
  • Tan LK, Giri D, Hummer AJ et al. Occult axillary node metastases in breast cancer are prognostically significant: results in 368 node-negative patients with 20-year follow-up. J. Clin. Oncol.26, 1803–1809 (2008).
  • Colleoni M, Rotmensz N, Peruzzotti G et al. Size of breast cancer metastases in axillary lymph nodes: clinical relevance of minimal lymph node involvement. J. Clin. Oncol.23, 1379–1389 (2005).
  • Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature406, 747–752 (2000).
  • Sorlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA98, 10869–10874 (2001).
  • Sorlie T, Tibshirani R, Parker J et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA100, 8418–8412 (2003).
  • Paik S, Shak S, Tang G et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med.351, 2817–2826 (2004).
  • van de Vijver MJ, He YD, van’t Veer LJ et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.347, 1999–2009 (2002).
  • Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N. Engl. J. Med.360(8), 790–800 (2009).
  • O’Shaughnessy JA. Molecular signatures predict outcomes of breast cancer. N. Engl. J. Med.355(6), 615–617 (2006).
  • Roukos DH. Twenty-one-gene assay: challenges and promises in translating personal genomics and whole-genome scans into personalized treatment of breast cancer. J. Clin. Oncol.27(8), 1337–1338 (2009).
  • Huang CC, Bredel M. Use of gene signatures to improve risk estimation in cancer. JAMA299(13), 1605–1606 (2008).
  • Fan C, Oh DS, Wessels L et al. Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med.355, 560–569 (2006).
  • Lee TS, Kilbreath SL, Refshauge KM, Herbert RD, Beith JM. Prognosis of the upper limb following surgery and radiation for breast cancer. Breast Cancer Res. Treat.110(1), 19–37 (2008).
  • National Comprehensive Cancer Network. Guidelines for Treatment of Cancer by Site. National Comprehensive Cancer Network, PA, USA (2009).
  • Gonzalez-Angulo AM, Litton JK, Broglio KR et al. High risk of recurrence for patients with breast cancer who have human epidermal growth factor receptor 2-positive, node-negative tumors 1 cm or smaller. J. Clin. Oncol.27(34), 5700–5706 (2009).
  • Curigliano G, Viale G, Bagnardi V et al. Clinical relevance of HER2 overexpression/ amplification in patients with small tumor size and node-negative breast cancer. J. Clin. Oncol.27(34), 5693–5699 (2009).
  • Joensuu H, Kellokumpu-Lehtinen P-L, Bono P et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N. Engl. J. Med.354(8), 809–820 (2006).
  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med.353(16), 1659–1672 (2005).
  • Romond EH, Perez EA, Bryant J et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med.353(16), 1673–1684 (2005).
  • Slamon D, Eiermann W, Robert N et al. BCIRG 006: 2nd interim analysis Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab with docetaxel, carboplatin and trastuzumab in HER2/neu positive early breast cancer patients. Presented at: 29th Annual San Antonio Breast Cancer Symposium. San Antonio, TX, USA, 14–17 December 2006.
  • Viani G, Afonso S, Stefano E et al. Adjuvant trastuzumab in the treatment of HER-2-positive early breast cancer: a meta-analysis of published randomized trials. BMC Cancer7, 153 (2007).
  • Roukos DH, Ziogas D. From tumor size and HER2 status to systems oncology for very early breast cancer treatment. Expert Rev. Anticancer Ther.10(2), 123–128 (2010).
  • Burstein HJ, Souter I, D’Alessandro HA, Sgroi DC. Case records of the Massachusetts General Hospital. Case 25–2009. A 36-year-old woman with hormone-receptor-positive breast cancer. N. Engl. J. Med.361(7), 699–707 (2009).
  • Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature458(7239), 719–724 (2009).
  • Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat. Rev. Cancer2(5), 331–341 (2002).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Friedman A, Perrimon N. Genetic screening for signal transduction in the era of network biology. Cell128, 225–231 (2007).
  • Roukos DH. Personalized cancer diagnostics and therapeutics. Expert Rev. Mol. Diagn.9(3), 227–229 (2009).
  • Roukos DH. Mea Culpa with cancer-targeted therapy: new thinking and new agents design for novel, causal networks-based, personalized biomedicine. Expert Rev. Mol. Diagn.9(3), 217–221 (2009).
  • Miller DG. On the nature of susceptibility to cancer. The presidential address. Cancer46, 1307–1318 (1980).
  • Schinzel AC, Hahn WC. Oncogenic transformation and experimental models of human cancer. Front. Biosci.13, 71–84 (2008).
  • Wood LD, Parsons DW, Jones S. The genomic landscapes of human breast and colorectal cancers. Science318(5853), 1108–1113 (2007).
  • Jones S, Zhang X, Parsons DW. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science321(5897), 1801–1806 (2008).
  • Shendure J, Ji H. Next-generation DNA sequencing. Nat. Biotechnol.26, 1135–1145 (2008).
  • Roukos DH. Bionetworks-based personalized medicine versus comparative-effectiveness research or harmonization of both in cancer management? Expert Rev. Mol. Diagn.10(3), 247–250 (2010).
  • Snyder M, Weissman S, Gerstein M. Personal phenotypes to go with personal genomes. Mol. Syst. Biol.5, 273 (2009).
  • Shah SP, Morin RD, Khattra J et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature461(7265), 809–813 (2009).
  • Stephens PJ, McBride DJ, Lin ML et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature462(7276), 1005–1010 (2009).
  • Beroukhim R, Mermel CH, Porter D et al. The landscape of somatic copy-number alteration across human cancers. Nature463(7283), 899–905 (2010).
  • Bastiaens P. Systems biology: when it is time to die. Nature459(7245), 334–335 (2009).
  • Rockman MV. Reverse engineering the genotype–phenotype map with natural genetic variation. Nature456, 738–744 (2008).
  • Bohman T. Mathematics. Emergence of connectivity in networks. Science323(5920), 1438–1439 (2009).
  • Roukos DH. Novel clinico–genome network modeling for revolutionizing genotype–phenotype-based personalized cancer care. Expert Rev. Mol. Diagn.10(1), 33–48 (2010).
  • Schadt EE. Molecular networks as sensors and drivers of common human diseases. Nature461(7261), 218–223 (2009).
  • Roukos DH. Systems medicine: a real approach for future personalized oncology? Pharmacogenomics11(3), 283–287 (2010).
  • Ledford H. Big science: the cancer genome challenge. Nature464(7291), 972–974 (2010).
  • The human genome at ten. Nature464(7289), 649–650 (2010).
  • Ding L, Ellis MJ, Li S et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature464(7291), 999–1005 (2010).
  • Roukos DH. Radiation therapy for breast cancer. N. Engl. J. Med.360(13), 1362 (2009).
  • Roukos DH. Beyond HER2 and trastuzumab: heterogeneity, systems biology, and cancer origin research may guide the future for personalized treatment of very early but aggressive breast cancer. J. Clin. Oncol.28(17), e279–e280 (2010).
  • Roukos DH. Personal genomics and genome-wide association studies: novel discoveries but limitations for practical personalized medicine. Ann. Surg. Oncol.16(3), 772–773 (2009).
  • Roukos DH, Ziogas D. Human genetic and structural genomic variation: would genome-wide association studies be the solution for cancer complexity like Alexander the Great for the ‘Gordian Knot’? Ann. Surg. Oncol.16(3), 774–775 (2009).
  • Ziogas D, Roukos DH. Genetics and personal genomics for personalized breast cancer surgery: progress and challenges in research and clinical practice. Ann. Surg. Oncol.16(7), 1771–1782 (2009).
  • Roukos DH. Genome-wide association studies: how predictable is a person’s cancer risk? Expert Rev. Anticancer Ther.9(4), 389–392 (2009).
  • Roukos DH. Genome-wide association studies and aggressive surgery toward individualized prevention, and improved local control and overall survival for gastric cancer. Ann. Surg. Oncol.16(4), 795–798 (2009).
  • Collins F. Has the revolution arrived? Nature464(7289), 674–675 (2010).
  • Venter JC. Multiple personal genomes await. Nature464(7289), 676–677 (2010).
  • Roukos DH. Complete genome sequencing and network modeling to overcome trastuzumab resistance. Pharmacogenomics11(8), 1039–1043 (2010).
  • Roukos DH. Next-generation, genome sequencing-based biomarkers: concerns and challenges for medical practice. Biomarkers Med.4(4), DOI 110.2217/BMM.10.70 (2010) (In press).
  • Katsios C, Roukos DH. Individual genomes and personalized medicine: life diversity and complexity. Per. Med.7(4), 347–350 (2010).
  • Roukos DH, Katsios C, Liakakos T. Genotype-phenotype map and molecular networks: a promising solution in overcoming colorectal cancer resistance to targeted treatment. Expert Rev. Mol. Diagn.10(5), 541–545 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.