406
Views
74
CrossRef citations to date
0
Altmetric
Review

Potential of CXCR4 antagonists for the treatment of metastatic lung cancer

, , &
Pages 621-630 | Published online: 10 Jan 2014

References

  • Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity12(2), 121–127 (2000).
  • Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre- B-cell growth-stimulating factor. Proc. Natl Acad. Sci. USA91(6), 2305–2309 (1994).
  • Bleul CC, Farzan M, Choe H et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature382(6594), 829–833 (1996).
  • Oberlin E, Amara A, Bachelerie F et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1 [published erratum appears in Nature 1996 Nov 21;384(6606):288]. Nature382(6594), 833–835 (1996).
  • Nagasawa T, Hirota S, Tachibana K et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature382(6592), 635–638 (1996).
  • Tachibana K, Hirota S, Iizasa H et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract [see comments]. Nature393(6685), 591–594 (1998).
  • Boldajipour B, Mahabaleshwar H, Kardash E et al. Control of chemokine-guided cell migration by ligand sequestration. Cell132(3), 463–473 (2008).
  • Sierro F, Biben C, Martinez-Munoz L et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc. Natl Acad. Sci. USA104(37), 14759–14764 (2007).
  • Hernandez PA, Gorlin RJ, Lukens JN et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat. Genet.34(1), 70–74 (2003).
  • Muller A, Homey B, Soto H et al. Involvement of chemokine receptors in breast cancer metastasis. Nature410(6824), 50–56 (2001).
  • Peled A, Petit I, Kollet O et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science (New York, NY)283(5403), 845–848 (1999).
  • Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity25(6), 977–988 (2006).
  • Sipkins DA, Wei X, Wu JW et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature435(7044), 969–973 (2005).
  • Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J. Exp. Med.195(9), 1145–1154 (2002).
  • Cashen AF, Nervi B, Dipersio J. AMD3100: CXCR4 antagonist and rapid stem cell-mobilizing agent. Future Oncol.3(1), 19–27 (2007).
  • Abraham M, Biyder K, Begin M et al. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003. Stem Cells25(9), 2158–2166 (2007).
  • Orimo A, Gupta PB, Sgroi DC et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121(3), 335–348 (2005).
  • Moore KA, Lemischka IR. Stem cells and their niches. Science (New York, NY)311(5769), 1880–1885 (2006).
  • Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell132(4), 598–611 (2008).
  • Laird DJ, Von Andrian UH, Wagers AJ. Stem cell trafficking in tissue development, growth, and disease. Cell132(4), 612–630 (2008).
  • De Visser KE, Coussens LM. The inflammatory tumor microenvironment and its impact on cancer development. Contrib. Microbiol.13, 118–137 (2006).
  • Raman D, Baugher PJ, Thu YM, Richmond A. Role of chemokines in tumor growth. Cancer Lett.256(2), 137–165 (2007).
  • Ben-Baruch A. The multifaceted roles of chemokines in malignancy. Cancer Metas. Rev.25(3), 357–371 (2006).
  • Vicari AP, Caux C. Chemokines in cancer. Cytokine Growth Factor Rev.13(2), 143–154 (2002).
  • Balkwill F. Cancer and the chemokine network. Nat. Rev.4(7), 540–550 (2004).
  • Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat. Rev.6(5), 392–401 (2006).
  • Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle5(15), 1597–1601 (2006).
  • Liyanage UK, Moore TT, Joo HG et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol.169(5), 2756–2761 (2002).
  • Murphy PM. Chemokines and the molecular basis of cancer metastasis. N. Engl. J. Med.345(11), 833–835 (2001).
  • Allinen M, Beroukhim R, Cai L et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell6(1), 17–32 (2004).
  • Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res.66(2), 605–612 (2006).
  • Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Investig.120(3), 694–705 (2010).
  • Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood107(5), 1761–1767 (2006).
  • Grunewald M, Avraham I, Dor Y et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell124(1), 175–189 (2006).
  • Sandler A, Yi J, Dahlberg S et al. Treatment outcomes by tumor histology in Eastern Cooperative Group Study E4599 of bevacizumab with paclitaxel/carboplatin for advanced non-small cell lung cancer. J. Thorac. Oncol.5(9), 1416–1423 (2010).
  • Li YM, Pan Y, Wei Y et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell6(5), 459–469 (2004).
  • Su L, Zhang J, Xu H et al. Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clin. Cancer Res.11(23), 8273–8280 (2005).
  • Spano JP, Andre F, Morat L et al. Chemokine receptor CXCR4 and early-stage non-small cell lung cancer: pattern of expression and correlation with outcome. Ann. Oncol.15(4), 613–617 (2004).
  • Wagner PL, Hyjek E, Vazquez MF et al. CXCL12 and CXCR4 in adenocarcinoma of the lung: association with metastasis and survival. J. Thorac. Cardiovasc. Surg.137(3), 615–621 (2009).
  • Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP, Strieter RM. The stromal derived factor-1/CXCL12–CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am. J. Respir. Crit. Care Med.167(12), 1676–1686 (2003).
  • Oonakahara K, Matsuyama W, Higashimoto I, Kawabata M, Arimura K, Osame M. Stromal-derived factor-1α/CXCL12–CXCR 4 axis is involved in the dissemination of NSCLC cells into pleural space. Am. J. Respir. Cell. Mol. Biol.30(5), 671–677 (2004).
  • Chen G, Wang Z, Liu XY, Liu FY. High-level CXCR4 expression correlates with brain-specific metastasis of non-small cell lung cancer. World J. Surg.35(1), 56–61 (2011).
  • Wald O, Izhar U, Amir G et al. CD4+CXCR4highCD69+ T cells accumulate in lung adenocarcinoma. J. Immunol.177(10), 6983–6990 (2006).
  • Simon Gr, Turrisi A. Management of small cell lung cancer: ACCP evidence-based clinical practice guidelines (2nd Edition). Chest132(3 Suppl.), 324S–339S (2007).
  • Sethi T, Rintoul RC, Moore SM et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat. Med.5(6), 662–668 (1999).
  • Burger M, Glodek A, Hartmann T et al. Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene22(50), 8093–8101 (2003).
  • Nicholson SA, Beasley MB, Brambilla E et al. Small cell lung carcinoma (SCLC): a clinicopathologic study of 100 cases with surgical specimens. Am. J. Surg. Pathol.26(9), 1184–1197 (2002).
  • Hodkinson PS, Mackinnon AC, Sethi T. Extracellular matrix regulation of drug resistance in small-cell lung cancer. Int. J. Radiat. Biol.83(11–12), 733–741 (2007).
  • Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood93(5), 1658–1667 (1999).
  • Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nat. Rev. Immunol.6(2), 107–116 (2006).
  • Kijima T, Maulik G, Ma PC et al. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res.62(21), 6304–6311 (2002).
  • Hartmann TN, Burger JA, Glodek A, Fujii N, Burger M. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene24(27), 4462–4471 (2005).
  • Tang CH, Tan TW, Fu WM, Yang RS. Involvement of matrix metalloproteinase-9 in stromal cell-derived factor-1/CXCR4 pathway of lung cancer metastasis. Carcinogenesis29(1), 35–43 (2008).
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med.3(7), 730–737 (1997).
  • Lessard J, Sauvageau G. BMI-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature423(6937), 255–260 (2003).
  • Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature367(6464), 645–648 (1994).
  • Calabrese C, Poppleton H, Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell11(1), 69–82 (2007).
  • Yang Zj, Wechsler-Reya Rj. Hit ‘em where they live: targeting the cancer stem cell niche. Cancer Cell11(1), 3–5 (2007).
  • Eramo A, Lotti F, Sette G et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ.15(3), 504–514 (2008).
  • Bertolini G, Roz L, Perego P et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc. Natl Acad. Sci. USA106(38), 16281–16286 (2009).
  • Salcido CD, Larochelle A, Taylor BJ, Dunbar CE, Varticovski L. Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br. J. Cancer102(11), 1636–1644 (2010).
  • Ooi AT, Mah V, Nickerson DW et al. Presence of a putative tumor-initiating progenitor cell population predicts poor prognosis in smokers with non-small cell lung cancer. Cancer Res.70(16), 6639–6648 (2010).
  • Donnenberg VS, Luketich JD, Landreneau RJ, Deloia JA, Basse P, Donnenberg AD. Tumorigenic epithelial stem cells and their normal counterparts. Ernst Schering Found. Symp. Proc.5, 245–263 (2006).
  • Levina V, Marrangoni AM, Demarco R, Gorelik E, Lokshin AE. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS ONE3(8), e3077 (2008).
  • Liotta LA. An attractive force in metastasis. Nature410(6824), 24–25 (2001).
  • Nakashima H, Masuda M, Murakami T et al. Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5,12, Lys-7]polyphemusin II): a possible inhibitor of virus-cell fusion. Antimicrob. Agents Chemother.36(6), 1249–1255 (1992).
  • Masuda M, Nakashima H, Ueda T et al. A novel anti-HIV synthetic peptide, T-22 ([Tyr5,12,Lys7]-polyphemusin II). Biochem. Biophys. Res. Commun.189(2), 845–850 (1992).
  • De Clercq E, Yamamoto N, Pauwels R et al. Potent and selective inhibition of human immunodeficiency virus (HIV)-1 and HIV-2 replication by a class of bicyclams interacting with a viral uncoating event. Proc. Natl Acad. Sci. USA89(12), 5286–5290 (1992).
  • De Clercq E. The AMD3100 story: the path to the discovery of a stem cell mobilizer (Mozobil). Biochem. Pharmacol.77(11), 1655–1664 (2009).
  • Doranz BJ, Grovit-Ferbas K, Sharron MP et al. A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J. Exp. Med.186(8), 1395–1400 (1997).
  • Schols D, Struyf S, Van Damme J, Este JA, Henson G, De Clercq E. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J. Exp. Med.186(8), 1383–1388 (1997).
  • Murakami T, Nakajima T, Koyanagi Y et al. A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J. Exp. Med.186(8), 1389–1393 (1997).
  • De Clercq E. The bicyclam AMD3100 story. Nat. Rev. Drug Discov.2(7), 581–587 (2003).
  • Hatse S, Princen K, Bridger G, De Clercq E, Schols D. Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett.527(1–3), 255–262 (2002).
  • Fricker SP, Anastassov V, Cox J et al. Characterization of the molecular pharmacology of AMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4. Biochem. Pharmacol.72(5), 588–596 (2006).
  • Donzella GA, Schols D, Lin SW et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat. Med.4(1), 72–77 (1998).
  • Hendrix CW, Flexner C, Macfarland RT et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob. Agents Chemother.44(6), 1667–1673 (2000).
  • Hendrix CW, Collier AC, Lederman MM et al. Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J. Acquir. Immune Defic. Syndr.37(2), 1253–1262 (2004).
  • Liles WC, Broxmeyer HE, Rodger E et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood102(8), 2728–2730 (2003).
  • Devine SM, Flomenberg N, Vesole DH et al. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J. Clin. Oncol.22(6), 1095–1102 (2004).
  • Devine SM, Vij R, Rettig M et al. Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction. Blood112(4), 990–998 (2008).
  • De Clercq E. Recent advances on the use of the CXCR4 antagonist plerixafor (AMD3100, Mozobil) and potential of other CXCR4 antagonists as stem cell mobilizers. Pharmacol. Therap.128(3), 509–518 (2010).
  • Dipersio JF, Stadtmauer EA, Nademanee A et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood113(23), 5720–5726 (2009).
  • Dipersio JF, Uy GL, Yasothan U, Kirkpatrick P. Plerixafor. Nat. Rev. Drug Discov.8(2), 105–106 (2009).
  • Burger JA, Peled A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia23(1), 43–52 (2009).
  • Stone ND, Dunaway SB, Flexner C et al. Multiple-dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects. Antimicrob. Agents Chemother.51(7), 2351–2358 (2007).
  • Tamamura H, Xu Y, Hattori T et al. A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong anti-HIV peptide T140. Biochem. Biophys. Res. Commun.253(3), 877–882 (1998).
  • Tamamura H, Omagari A, Hiramatsu K et al. Development of specific CXCR4 inhibitors possessing high selectivity indexes as well as complete stability in serum based on an anti-HIV peptide T140. Bioorg. Med. Chem. Lett.11(14), 1897–1902 (2001).
  • Trent JO, Wang ZX, Murray JL et al. Lipid bilayer simulations of CXCR4 with inverse agonists and weak partial agonists. J. Biol. Chem.278(47), 47136–47144 (2003).
  • Zhang WB, Navenot JM, Haribabu B et al. A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40-4C are weak partial agonists. J. Biol. Chem.277(27), 24515–24521 (2002).
  • Kohara H, Omatsu Y, Sugiyama T, Noda M, Fujii N, Nagasawa T. Development of plasmacytoid dendritic cells in bone marrow stromal cell niches requires CXCL12–CXCR4 chemokine signaling. Blood110(13), 4153–4160 (2007).
  • Kabashima K, Shiraishi N, Sugita K et al. CXCL12–CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol.171(4), 1249–1257 (2007).
  • Allen CD, Ansel KM, Low C et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol.5(9), 943–952 (2004).
  • Petit I, Szyper-Kravitz M, Nagler A et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol.3(7), 687–694 (2002).
  • Doranz BJ, Filion LG, Diaz-Mitoma F et al. Safe use of the CXCR4 inhibitor ALX40–4C in humans. AIDS Res. Hum. Retroviruses17(6), 475–486 (2001).
  • Endres MJ, Clapham PR, Marsh M et al. CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell87(4), 745–756 (1996).
  • Bertolini F, Dell’agnola C, Mancuso P et al. CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin’s lymphoma. Cancer Res.62(11), 3106–3112 (2002).
  • Engl T, Relja B, Marian D et al. CXCR4 chemokine receptor mediates prostate tumor cell adhesion through α5 and β3 integrins. Neoplasia8(4), 290–301 (2006).
  • Baribaud F, Edwards TG, Sharron M et al. Antigenically distinct conformations of CXCR4. J. Virol.75(19), 8957–8967 (2001).
  • Farzan M, Babcock GJ, Vasilieva N et al. The role of post-translational modifications of the CXCR4 amino terminus in stromal-derived factor 1 α association and HIV-1 entry. J. Biol. Chem.277(33), 29484–29489 (2002).
  • Wong D, Korz W. Translating an antagonist of chemokine receptor CXCR4: from bench to bedside. Clin. Cancer Res.14(24), 7975–7980 (2008).
  • Perez LE, Alpdogan O, Shieh JH et al. Increased plasma levels of stromal-derived factor-1 (SDF-1/CXCL12) enhance human thrombopoiesis and mobilize human colony-forming cells (CFC) in NOD/SCID mice. Exp. Hematol.32(3), 300–307 (2004).
  • Kim SY, Lee CH, Midura BV et al. Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin. Exp. Metastasis25(3), 201–211 (2008).
  • Hachet-Haas M, Balabanian K, Rohmer F et al. Small neutralizing molecules to inhibit actions of the chemokine CXCL12. J. Biol. Chem.283(34), 23189–23199 (2008).
  • Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat. Rev. Genet.8(3), 173–184 (2007).
  • Chen Y, Stamatoyannopoulos G, Song CZ. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res.63(16), 4801–4804 (2003).
  • Jähnichen S, Blanchetot C, Maussang D et al. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc. Natl Acad. Sci. USA107(47), 20565–20570 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.