108
Views
14
CrossRef citations to date
0
Altmetric
Review

Emerging antiangiogenic therapies for non-small-cell lung cancer

&
Pages 1607-1618 | Published online: 10 Jan 2014

References

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J. Clin.59(4), 225–249 (2009).
  • American Cancer Society. Cancer Facts & Figures, 2008. American Cancer Society, Inc., Atlanta, GA, USA (2008).
  • Park JO, Kim SW, Ahn JS et al. Phase III trial of two versus four additional cycles in patients who are nonprogressive after two cycles of platinum-based chemotherapy in non small-cell lung cancer. J. Clin. Oncol.25(33), 5233–5239 (2007).
  • Schiller JH, Harrington D, Belani CP et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med.346(2), 92–98 (2002).
  • Smith IE, O’Brien ME, Talbot DC et al. Duration of chemotherapy in advanced non-small-cell lung cancer: a randomized trial of three versus six courses of mitomycin, vinblastine, and cisplatin. J. Clin. Oncol.19(5), 1336–1343 (2001).
  • Socinski MA, Schell MJ, Peterman A et al. Phase III trial comparing a defined duration of therapy versus continuous therapy followed by second-line therapy in advanced-stage IIIB/IV non-small-cell lung cancer. J. Clin. Oncol.20(5), 1335–1343 (2002).
  • von Plessen C, Bergman B, Andresen O et al. Palliative chemotherapy beyond three courses conveys no survival or consistent quality-of-life benefits in advanced non-small-cell lung cancer. Br. J. Cancer95(8), 966–973 (2006).
  • Scagliotti GV, Parikh P, von Pawel J. et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol.26(21), 3543–3551 (2008).
  • Breathnach OS, Freidlin B, Conley B et al. Twenty-two years of Phase III trials for patients with advanced non-small-cell lung cancer: sobering results. J. Clin. Oncol.19(6), 1734–1742 (2001).
  • Carney DN. Lung cancer – time to move on from chemotherapy. N. Engl. J. Med.346(2), 126–128 (2002).
  • Tarceva® (erlotinib tablets), package insert. Genentech, Inc., CA, USA
  • Iressa® (gefitinib tablets), package insert. AstraZeneca Pharmaceuticals LP, DE, USA.
  • Pirker R, Pereira JR, Szczesna A et al. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised Phase III trial. Lancet373(9674), 1525–1531 (2009).
  • Kwak EL, Bang YJ, Camidge DR et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med.363(18), 1693–1703 (2010).
  • Camidge DR, Bang Y, Kwak EL et al. Progression-free survival (PFS) from a Phase I study of crizotinib (PF-02341066) in patients with ALK-positive non-small-cell lung cancer (NSCLC). J. Clin. Oncol.29(Suppl.), (2011) (Abstract 2501).
  • Riely GJ, Kim D-W, Crino L et al. Phase II data for crizotinib (PF-02341066) in ALK-positive advanced non-small-cell lung cancer (NSCLC): PROFILE 1005. J. Thorac. Oncol.6(Suppl. 2), S411 (2011) (Abstract O31.05).
  • Shaw AT, Yeap B, Solomon B et al. Crizotinib improves overall survival of ALK-positive patients with advanced NSCLC compared with historical controls. J. Thorac. Oncol.6(Suppl. 2), S412 (2011) (Abstract O31.06).
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat. Med.9(6), 669–676 (2003).
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature407(6801), 249–257 (2000).
  • Folkman J, Klagsbrun M. Vascular physiology. A family of angiogenic peptides. Nature329(6141), 671–672 (1987).
  • Folkman J, Shing Y. Angiogenesis. J. Biol.Chem.267(16), 10931–10934 (1992).
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86(3), 353–364 (1996).
  • Kerbel RS. Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science312(5777), 1171–1175 (2006).
  • Carmeliet P. Angiogenesis in life, disease and medicine. Nature438(7070), 932–936 (2005).
  • Kreuter M, Kropff M, Fischaleck A et al. Prognostic relevance of angiogenesis in stage III NSCLC receiving multimodality treatment. Eur. Respir. J.33(6), 1383–1388 (2009).
  • Meert AP, Paesmans M, Martin B et al. The role of microvessel density on the survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br. J. Cancer87(7), 694–701 (2002).
  • Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am. J. Pathol.147(1), 9–19 (1995).
  • Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol.23(5), 1011–1027 (2005).
  • Toi M, Matsumoto T, Bando H. Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol.2(11), 667–673 (2001).
  • Kim KJ, Li B, Winer J et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo.Nature362(6423), 841–844 (1993).
  • Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr. Rev.18(1), 4–25 (1997).
  • Fukumura D, Xavier R, Sugiura T et al. Tumor induction of VEGF promoter activity in stromal cells. Cell94(6), 715–725 (1998).
  • Gerber HP, Kowalski J, Sherman D, Eberhard DA, Ferrara N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res.60(22), 6253–6258 (2000).
  • Delmotte P, Martin B, Paesmans M et al. [VEGF and survival of patients with lung cancer: a systematic literature review and meta-analysis]. Rev. Mal. Respir.19(5 Pt 1), 577–584 (2002).
  • Yuan A, Yu CJ, Kuo SH et al. Vascular endothelial growth factor 189 mRNA isoform expression specifically correlates with tumor angiogenesis, patient survival, and postoperative relapse in non-small-cell lung cancer. J. Clin. Oncol.19(2), 432–441 (2001).
  • Millauer B, Longhi MP, Plate KH et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo.Cancer Res.56(7), 1615–1620 (1996).
  • Beitz JG, Kim IS, Calabresi P, Frackelton AR Jr. Human microvascular endothelial cells express receptors for platelet-derived growth factor. Proc. Natl Acad. Sci. USA88(5), 2021–2025 (1991).
  • Alvarez RH, Kantarjian HM, Cortes JE. Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin. Proc.81(9), 1241–1257 (2006).
  • Bergsten E, Uutela M, Li X et al. PDGF-D is a specific, protease-activated ligand for the PDGF β-receptor. Nat. Cell. Biol.3(5), 512–516 (2001).
  • Wu E, Palmer N, Tian Z et al. Comprehensive dissection of PDGF–PDGFR signaling pathways in PDGFR genetically defined cells. PLoSOne.3(11), e3794 (2008).
  • Levitzki A. PDGF receptor kinase inhibitors for the treatment of PDGF driven diseases. Cytokine Growth Factor Rev.15(4), 229–235 (2004).
  • Pietras K, Rubin K, Sjoblom T et al. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res.62(19), 5476–5484 (2002).
  • Oikawa T, Onozawa C, Sakaguchi M, Morita I, Murota S. Three isoforms of platelet-derived growth factors all have the capability to induce angiogenesis in vivo.Biol. Pharm. Bull.17(12), 1686–1688 (1994).
  • Risau W, Drexler H, Mironov V et al. Platelet-derived growth factor is angiogenic in vivo.Growth Factors7(4), 261–266 (1992).
  • Hellstrom M, Gerhardt H, Kalen M et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol.153(3), 543–553 (2001).
  • Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science277(5323), 242–245 (1997).
  • Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J. Clin. Invest.112(8), 1142–1151 (2003).
  • Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-β and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development126(14), 3047–3055 (1999).
  • Jain RK, Booth MF. What brings pericytes to tumor vessels? J. Clin. Invest.112(8), 1134–1136 (2003).
  • Dong J, Grunstein J, Tejada M et al. VEGF-null cells require PDGFR α signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J.23(14), 2800–2810 (2004).
  • Brogi E, Wu T, Namiki A, Isner JM. Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation90(2), 649–652 (1994).
  • Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest.111(9), 1287–1295 (2003).
  • Erber R, Thurnher A, Katsen AD et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J.18(2), 338–340 (2004).
  • Cabebe E, Wakelee H. Role of anti-angiogenesis agents in treating NSCLC: focus on bevacizumab and VEGFR tyrosine kinase inhibitors. Curr. Treat. Options Oncol.8(1), 15–27 (2007).
  • Murakami M, Zheng Y, Hirashima M et al. VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment. Arterioscler. Thromb. Vasc. Biol.28(4), 658–664 (2008).
  • Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev.16(2), 159–178 (2005).
  • Rusnati M, Presta M. Fibroblast growth factors/fibroblast growth factor receptors as targets for the development of anti-angiogenesis strategies. Curr. Pharm. Des.13(20), 2025–2044 (2007).
  • Gerritsen ME, Soriano R, Yang S et al. Branching out: a molecular fingerprint of endothelial differentiation into tube-like structures generated by Affymetrix oligonucleotide arrays. Microcirculation10(1), 63–81 (2003).
  • Klein S, Giancotti FG, Presta M, Albelda SM, Buck CA, Rifkin DB. Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells. Mol. Biol. Cell4(10), 973–982 (1993).
  • Underwood PA, Bean PA, Gamble JR. Rate of endothelial expansion is controlled by cell:cell adhesion. Int. J. Biochem. Cell Biol.34(1), 55–69 (2002).
  • Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell8(4), 299–309 (2005).
  • Kano MR, Morishita Y, Iwata C et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRβ signaling. J. Cell Sci.118(Pt 16), 3759–3768 (2005).
  • Nissen LJ, Cao R, Hedlund EM et al. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J. Clin. Invest.117(10), 2766–2777 (2007).
  • Johnson DH, Fehrenbacher L, Novotny WF et al. Randomized Phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol.22(11), 2184–2191 (2004).
  • Sandler A, Gray R, Perry MC et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med.355(24), 2542–2550 (2006).
  • Ramalingam SS, Dahlberg SE, Langer CJ et al. Outcomes for elderly, advanced-stage non small-cell lung cancer patients treated with bevacizumab in combination with carboplatin and paclitaxel: analysis of Eastern Cooperative Oncology Group Trial 4599. J. Clin. Oncol.26(1), 60–65 (2008).
  • Reck M, von Pawel J, Zatloukal P et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiL. J. Clin. Oncol.27(8), 1227–1234 (2009).
  • Reck M, von Pawel J, Zatloukal P et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised Phase III trial (AVAiL). Ann. Oncol.21(9), 1804–1809 (2010).
  • Leighl NB, Zatloukal P, Mezger J et al. Efficacy and safety of bevacizumab-based therapy in elderly patients with advanced or recurrent nonsquamous non-small-cell lung cancer in the Phase III BO17704 study (AVAiL). J. Thorac. Oncol.5(12), 1970–1976 (2010).
  • Thomas M, Reuss A, Fischer JR et al. Innovations: Randomized Phase II trial of erlotinib (E)/bevacizumab (B) compared with cisplatin (P)/gemcitabine (G) plus B in first-line treatment of advanced nonsquamous (NS) non-small-cell lung cancer (NSCLC). J. Clin. Oncol.29(15S), (2011) (Abstract 7504).
  • Miller VA, O’Conner P, Soh C, Kabbinavar F; for the ATLAS Investigators. A randomized, double-blind, placebo-controlled, Phase IIIb trial (ATLAS) comparing bevacizumab (B) therapy with or without erlotinib (E) after completion of chemotherapy with B for first-line treatment of locally advanced, recurrent, or metastatic non-small-cell lung cancer (NSCLC). J. Clin. Oncol.27(18S), (2009) (Abstract LBA8002).
  • Kabbinavar FF, Miller VA, Johnson BE, O’Connor PG, Soh C; ATLAS. Overall survival (OS) in ATLAS, a Phase IIIb trial comparing bevacizumab (B) therapy with or without erlotinib (E) after completion of chemotherapy (chemo) with B for first-line treatment of locally advanced, recurrent, or metastatic non-small-cell lung cancer (NSCLC). J. Clin. Oncol.28(15s), (2010) (Abstract 7526).
  • Ardizzoni A, Boni L, Tiseo M et al. Cisplatin- versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: an individual patient data meta-analysis. J. Natl Cancer Inst.99(11), 847–857 (2007).
  • Hotta K, Matsuo K, Ueoka H, Kiura K, Tabata M, Tanimoto M. Meta-analysis of randomized clinical trials comparing Cisplatin to Carboplatin in patients with advanced non-small-cell lung cancer. J. Clin. Oncol.22(19), 3852–3859 (2004).
  • Patel JD, Hensing TA, Rademaker A et al. Phase II study of pemetrexed and carboplatin plus bevacizumab with maintenance pemetrexed and bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer. J. Clin. Oncol.27(20), 3284–3289 (2009).
  • Patel JD, Bonomi P, Socinski MA et al. Treatment rationale and study design for the pointbreak study: a randomized, open-label Phase III study of pemetrexed/carboplatin/bevacizumab followed by maintenance pemetrexed/bevacizumab versus paclitaxel/carboplatin/bevacizumab followed by maintenance bevacizumab in patients with stage IIIB or IV nonsquamous non-small-cell lung cancer. Clin. Lung Cancer10(4), 252–256 (2009).
  • Crino L, Dansin E, Garrido P et al. Safety and efficacy of first-line bevacizumab-based therapy in advanced non-squamous non-small-cell lung cancer (SAiL, MO19390): a Phase 4 study. Lancet Oncol.11(8), 733–740 (2010).
  • Wozniak AJ, Garst J, Jahanzeb M et al. Clinical outcomes (CO) for special populations of patients (pts) with advanced non-small-cell lung cancer (NSCLC): results from ARIES, a bevacizumab (BV) observational cohort study (OCS). J. Clin. Oncol.28(7s), (2010) (Abstract 7618).
  • Lockhart AC, Rothenberg ML, Dupont J et al. Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J. Clin. Oncol.28(2), 207–214 (2010).
  • Novello S, Ramlau R, Gorbunova VA et al. Aflibercept in combination with docetaxel for second-line treatment of locally advanced or metastatic non-small-cell lung cancer (NSCLC): final results of a multinational placebo-controlled Phase III trial (EFC10261-VITAL). Abstract associated with oral presentation at: The 14th Biennial World Conference on Lung Cancer. Amsterdam, The Netherlands, 3–7 July 2011 (Abstract O43.06).
  • Spratlin JL, Cohen RB, Eadens M et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor 2. J. Clin. Oncol.28(5), 780–787 (2010).
  • Camidge DR, Ballas MS, Dubey S et al. A Phase II, open-label study of ramucirumab (IMC-1121B), an IgG1 fully human monoclonal antibody (MAb) targeting VEGFR-2, in combination with paclitaxel and carboplatin as first-line therapy in patients (pts) with stage IIIb/IV non-small-cell lung cancer (NSCLC). J. Clin. Oncol.28(15S), (2010) (Abstract 7588).
  • Wilhelm SM, Carter C, Tang L et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res.64(19), 7099–7109 (2004).
  • Blumenschein GR Jr, Gatzemeier U, Fossella F et al. Phase II, multicenter, uncontrolled trial of single-agent sorafenib in patients with relapsed or refractory, advanced non-small-cell lung cancer. J. Clin. Oncol.27(26), 4274–4280 (2009).
  • Scagliotti G, Novello S, von Pawel J et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J. Clin. Oncol.28(11), 1835–1842 (2010).
  • Gatzemeier U, Eisen T, Santoro A et al. Sorafenib (S) gemcitabine/cisplatin (GC) vs GC alone in the first-line treatment of advanced non-small-cell lung cancer (NSCLC): Phase III NSCLC research experience utilizing sorafenib (NEXUS) trial [abstract]. Ann. Oncol.21(Suppl. 8), viii7 (2010).
  • Schiller JH, Lee JW, Hanna NH, Traynor AM, Carbone DP. A randomized discontinuation Phase II study of sorafenib versus placebo in patients with non-small-cell lung cancer who have failed at least two prior chemotherapy regimens: E2501. J. Clin. Oncol.26(15S), (2008) (Abstract 8014).
  • Socinski MA, Novello S, Brahmer JR et al. Multicenter, Phase II trial of sunitinib in previously treated, advanced non-small-cell lung cancer. J. Clin. Oncol.26(4), 650–656 (2008).
  • Novello S, Scagliotti GV, Rosell R et al. Phase II study of continuous daily sunitinib dosing in patients with previously treated advanced non-small-cell lung cancer. Br. J. Cancer101(9), 1543–1548 (2009).
  • Hilberg F, Roth GJ, Krssak M et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res.68(12), 4774–4782 (2008).
  • Roth GJ, Heckel A, Colbatzky F et al. Design, synthesis, and evaluation of indolinones as triple angiokinase inhibitors and the discovery of a highly specific 6-methoxycarbonyl-substituted indolinone (BIBF 1120). J. Med. Chem.52(14), 4466–4480 (2009).
  • Reck M, Kaiser R, Eschbach C et al. A Phase II double-blind study to investigate efficacy and safety of two doses of the triple angiokinase inhibitor BIBF 1120 in patients with relapsed advanced non-small-cell lung cancer. Ann. Oncol.22(6), 1374–1381 (2011).
  • Wedge SR, Ogilvie DJ, Dukes M et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res.62(16), 4645–4655 (2002).
  • Natale RB, Bodkin D, Govindan R et al. Vandetanib versus gefitinib in patients with advanced non-small-cell lung cancer: results from a two-part, double-blind, randomized Phase II study. J. Clin. Oncol.27(15), 2523–2529 (2009).
  • De Boer RH, Arrieta O, Yang CH et al. Vandetanib plus pemetrexed for the second-line treatment of advanced non-small-cell lung cancer: a randomized, double-blind Phase III trial. J. Clin. Oncol.29(8), 1067–1074 (2011).
  • Herbst RS, Sun Y, Eberhardt WE et al. Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): a double-blind, randomised, Phase 3 trial. Lancet Oncol.11(7), 619–626 (2010).
  • Natale RB, Thongprasert S, Greco FA et al. Phase III trial of vandetanib compared with erlotinib in patients with previously treated advanced non-small-cell lung cancer. J. Clin. Oncol.29(8), 1059–1066 (2011).
  • Lee J, Hirsh V, Park K et al. Vandetanib versus placebo in patients with advanced non-small-cell lung cancer (NSCLC) after prior therapy with an EGFR tyrosine kinase inhibitor (TKI): a randomized, double-blind Phase III trial (ZEPHYR). J. Clin. Oncol.28(15s), (2010) (Abstract 7525).
  • Nikolinakos P, Heymach JV. The tyrosine kinase inhibitor cediranib for non-small-cell lung cancer and other thoracic malignancies. J. Thorac. Oncol.3(6 Suppl. 2), S131–S134 (2008).
  • Goss GD, Arnold A, Shepherd FA et al. Randomized, double-blind trial of carboplatin and paclitaxel with either daily oral cediranib or placebo in advanced non-small-cell lung cancer: NCIC Clinical Trials Group BR24 study. J. Clin. Oncol.28(1), 49–55 (2010).
  • Gadgeel SM, Ruckdeschel JC, Wozniak AJ et al. Cediranib, a VEGF receptor 1, 2, and 3 inhibitor, and pemetrexed in patients (pts) with recurrent non-small-cell lung cancer (NSCLC). J. Clin. Oncol.29(Suppl.), (2011) (Abstract 7564).
  • Polverino A, Coxon A, Starnes C et al. AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Res.66(17), 8715–8721 (2006).
  • Blumenschein GR Jr, Kabbinavar F, Menon H et al. A Phase II, multicenter, open-label randomized study of motesanib or bevacizumab in combination with paclitaxel and carboplatin for advanced nonsquamous non-small-cell lung cancer. Ann. Oncol.22(9), 2057–2067 (2011).
  • Scagliotti G, Vynnychenko I, Ichinose Y et al. An international, randomized, placebo-controlled, double-blind Phase III study (MONET1) of motesanib plus carboplatin/paclitaxel (C/P) in patients with advanced nonsquamous non-small-cell lung cancer (NSCLC). J. Clin. Oncol.29(Suppl.), (2011) (Abstract LBA7512).
  • Kumar R, Knick VB, Rudolph SK et al. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol. Cancer Ther.6(7), 2012–2021 (2007).
  • Podar K, Tonon G, Sattler M et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc. Natl. Acad. Sci. USA103(51), 19478–19483 (2006).
  • Choueiri TK. Axitinib, a novel antiangiogenic drug with promising activity in various solid tumors. Curr. Opin. Investig. Drugs9(6), 658–671 (2008).
  • Schiller JH, Larson T, Ou SH et al. Efficacy and safety of axitinib in patients with advanced non-small-cell lung cancer: results from a Phase II study. J. Clin. Oncol.27(23), 3836–3841 (2009).
  • Gridelli C, Rossi A, Maione P et al. Vascular disrupting agents: a novel mechanism of action in the battle against non-small-cell lung cancer. Oncologist14(6), 612–620 (2009).
  • McKeage MJ, Reck M, Jameson MB et al. Phase II study of ASA404 (vadimezan, 5,6-dimethylxanthenone-4-acetic acid/DMXAA) 1800mg/m(2) combined with carboplatin and paclitaxel in previously untreated advanced non-small-cell lung cancer. Lung Cancer65(2), 192–197 (2009).
  • McKeage MJ, von Pawel J, Reck M et al. Randomised Phase II study of ASA404 combined with carboplatin and paclitaxel in previously untreated advanced non-small-cell lung cancer. Br. J. Cancer99(12), 2006–2012 (2008).
  • Lara PN Jr, Douillard JY, Nakagawa K et al. Randomized Phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J. Clin. Oncol.29(22), 2965–2971 (2011).
  • Mauer AM, Cohen EE, Ma PC et al. A Phase II study of ABT-751 in patients with advanced non-small-cell lung cancer. J. Thorac. Oncol.3(6), 631–636 (2008).
  • Rudin CM, Mauer A, Smakal M et al. Phase I/II study of pemetrexed with or without ABT-751 in advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol.29(8), 1075–1082 (2011).
  • Garmy-Susini B, Varner JA. Roles of integrins in tumor angiogenesis and lymphangiogenesis. Lymphat. Res. Biol.6(3–4), 155–163 (2008).
  • Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE. Integrins: the keys to unlocking angiogenesis. Arterioscler.Thromb. Vasc. Biol.28(10), 1703–1713 (2008).
  • Brooks PC, Montgomery AM, Rosenfeld M et al. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell79(7), 1157–1164 (1994).
  • Kumar CC, Malkowski M, Yin Z et al. Inhibition of angiogenesis and tumor growth by SCH221153, a dual α(v)β3 and α(v)β5 integrin receptor antagonist. Cancer Res.61(5), 2232–2238 (2001).
  • Gogali A, Charalabopoulos K, Constantopoulos S. Integrin receptors in primary lung cancer. Exp. Oncol.26(2), 106–110 (2004).
  • Delbaldo C, Raymond E, Vera K et al. Phase I and pharmacokinetic study of etaracizumab (Abegrin), a humanized monoclonal antibody against αvβ3 integrin receptor, in patients with advanced solid tumors. Invest. New Drugs26(1), 35–43 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.