162
Views
47
CrossRef citations to date
0
Altmetric
Theme: Skin Cancer - Review

Therapy for metastatic melanoma: an overview and update

Pages 725-737 | Published online: 10 Jan 2014

References

  • AIHW Australia Cancer Incidence and Mortality (ACIM) Books: Incidence Numbers and Rates from 1982 to 2006, and Mortality Numbers and Rates from 1968 to 2007 (2010).
  • SEER Cancer Statistics Review, 1975–2005. National Cancer Institute, Bethesda, MD, USA (2008).
  • Thompson JF, Scolyer RA, Kefford RF. Cutaneous melanoma. Lancet365(9460), 687–701 (2005).
  • Balch CM, Gershenwald JE, Soong SJ et al. Final version of 2009 AJCC melanoma staging and classification. J. Clin. Oncol.27(36), 6199–6206 (2009).
  • Balch CM, Soong SJ, Gershenwald JE et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol.19(16), 3622–3634 (2001).
  • Carlson JA, Ross JS, Slominski A et al. Molecular diagnostics in melanoma. J. Am. Acad. Dermatol.52(5), 743–775; quiz 775–778 (2005).
  • Elwood JM, Jopson J. Melanoma and sun exposure: an overview of published studies. Int. J. Cancer73(2), 198–203 (1997).
  • Goldstein AM, Tucker MA. Etiology, epidemiology, risk factors, and public health issues of melanoma. Curr. Opin. Oncol.5(2), 358–363 (1993).
  • Veierod MB, Weiderpass E, Thorn M et al. A prospective study of pigmentation, sun exposure, and risk of cutaneous malignant melanoma in women. J. Natl Cancer Inst.95(20), 1530–1538 (2003).
  • Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol.21(2), 233–240 (2009).
  • Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer8(4), 299–308 (2008).
  • Lee ML, Tomsu K, Von Eschen KB. Duration of survival for disseminated malignant melanoma: results of a meta-analysis. Melanoma Res.10(1), 81–92 (2000).
  • Hersey P, Bastholt L, Chiarion-Sileni V et al. Small molecules and targeted therapies in distant metastatic disease. Ann. Oncol.20(Suppl. 6), vi35–vi40 (2009).
  • Tsao H, Atkins MB, Sober AJ. Management of cutaneous melanoma. N. Engl. J. Med.351(10), 998–1012 (2004).
  • Middleton MR, Grob JJ, Aaronson N et al. Randomized Phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J. Clin. Oncol.18(1), 158–166 (2000).
  • Jacquillat C, Khayat D, Banzet P et al. Chemotherapy by fotemustine in cerebral metastases of disseminated malignant melanoma. Cancer Chemother. Pharmacol.25(4), 263–266 (1990).
  • Avril MF, Aamdal S, Grob JJ et al. Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a Phase III study. J. Clin. Oncol.22(6), 1118–1125 (2004).
  • Glover D, Ibrahim J, Kirkwood J et al. Phase II randomized trial of cisplatin and WR-2721 versus cisplatin alone for metastatic melanoma: an Eastern Cooperative Oncology Group Study (E1686). Melanoma Res.13(6), 619–626 (2003).
  • Evans LM, Casper ES, Rosenbluth R. Phase II trial of carboplatin in advanced malignant melanoma. Cancer Treat. Rep.71(2), 171–172 (1987).
  • Quagliana JM, Stephens RL, Baker LH, Costanzi JJ. Vindesine in patients with metastatic malignant melanoma: a Southwest Oncology Group study. J. Clin. Oncol.2(4), 316–319 (1984).
  • Emmert S, Zutt M, Haenssle H, Neumann C, Kretschmer L. Inefficacy of vindesine monotherapy in advanced stage IV malignant melanoma patients previously treated with other chemotherapeutic agents. Melanoma Res.13(3), 299–302 (2003).
  • Bedikian AY, Plager C, Papadopoulos N et al. Phase II evaluation of paclitaxel by short intravenous infusion in metastatic melanoma. Melanoma Res.14(1), 63–66 (2004).
  • Aamdal S, Wolff I, Kaplan S et al. Docetaxel (Taxotere) in advanced malignant melanoma: a Phase II study of the EORTC Early Clinical Trials Group. Eur. J. Cancer30A(8), 1061–1064 (1994).
  • Dummer R, Garbe C, Thompson JA et al. Randomized dose-escalation study evaluating peginterferon α-2a in patients with metastatic malignant melanoma. J. Clin. Oncol.24(7), 1188–1194 (2006).
  • McMasters KM, Edwards MJ, Ross MI et al. Ulceration as a predictive marker for response to adjuvant interferon therapy in melanoma. Ann. Surg.252(3), 460–465; discussion 465–466 (2010).
  • Atkins MB, Lotze MT, Dutcher JP et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol.17(7), 2105–2116 (1999).
  • Pack GT, Miller TR. Metastatic melanoma with indeterminate primary site. Report of two instances of long-term survival. JAMA176, 55–56 (1961).
  • Costanza ME, Nathanson L, Schoenfeld D et al. Results with methyl-CCNU and DTIC in metastatic melanoma. Cancer40(3), 1010–1015 (1977).
  • Avril MF, Bonneterre J, Delaunay M et al. Combination chemotherapy of dacarbazine and fotemustine in disseminated malignant melanoma. Experience of the French Study Group. Cancer Chemother. Pharmacol.27(2), 81–84 (1990).
  • Fletcher WS, Green S, Fletcher JR et al. Evaluation of cis-platinum and DTIC combination chemotherapy in disseminated melanoma. A Southwest Oncology Group Study. Am. J. Clin. Oncol.11(5), 589–593 (1988).
  • Legha SS, Ring S, Papadopoulos N et al. A prospective evaluation of a triple-drug regimen containing cisplatin, vinblastine, and dacarbazine (CVD) for metastatic melanoma. Cancer64(10), 2024–2029 (1989).
  • Del Prete SA, Maurer LH, O’Donnell J, Forcier RJ, LeMarbre P. Combination chemotherapy with cisplatin, carmustine, dacarbazine, and tamoxifen in metastatic melanoma. Cancer Treat. Rep.68(11), 1403–1405 (1984).
  • Jilaveanu LB, Aziz SA, Kluger HM. Chemotherapy and biologic therapies for melanoma: do they work? Clin. Dermatol.27(6), 614–625 (2009).
  • Chapman PB, Einhorn LH, Meyers ML et al. Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J. Clin. Oncol.17(9), 2745–2751 (1999).
  • Chiarion Sileni V, Nortilli R, Aversa SM et al. Phase II randomized study of dacarbazine, carmustine, cisplatin and tamoxifen versus dacarbazine alone in advanced melanoma patients. Melanoma Res.11(2), 189–196 (2001).
  • Perez DG, Suman VJ, Fitch TR et al. Phase 2 trial of carboplatin, weekly paclitaxel, and biweekly bevacizumab in patients with unresectable stage IV melanoma: a North Central Cancer Treatment Group study, N047A. Cancer115(1), 119–127 (2009).
  • Bajetta E, Di Leo A, Zampino MG et al. Multicenter randomized trial of dacarbazine alone or in combination with two different doses and schedules of interferon α-2a in the treatment of advanced melanoma. J. Clin. Oncol.12(4), 806–811 (1994).
  • Young AM, Marsden J, Goodman A, Burton A, Dunn JA. Prospective randomized comparison of dacarbazine (DTIC) versus DTIC plus interferon-α (IFN-α) in metastatic melanoma. Clin. Oncol. (R. Coll. Radiol.)13(6), 458–465 (2001).
  • Dummer R, Gore ME, Hancock BW et al. A multicenter Phase II clinical trial using dacarbazine and continuous infusion interleukin-2 for metastatic melanoma. Clinical data and immunomonitoring. Cancer75(4), 1038–1044 (1995).
  • Eton O, Legha SS, Bedikian AY et al. Sequential biochemotherapy versus chemotherapy for metastatic melanoma: results from a Phase III randomized trial. J. Clin. Oncol.20(8), 2045–2052 (2002).
  • Atkins MB, Hsu J, Lee S et al. Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon α-2b with cisplatin, vinblastine, and dacarbazine alone in patients with metastatic malignant melanoma (E3695): a trial coordinated by the Eastern Cooperative Oncology Group. J. Clin. Oncol.26(35), 5748–5754 (2008).
  • Atzpodien J, Neuber K, Kamanabrou D et al. Combination chemotherapy with or without s.c. IL-2 and IFN-α: results of a prospectively randomized trial of the Cooperative Advanced Malignant Melanoma Chemoimmunotherapy Group (ACIMM). Br. J. Cancer86(2), 179–184 (2002).
  • Weinstein IB. Cancer. Addiction to oncogenes: the Achilles heal of cancer. Science297(5578), 63–64 (2002).
  • Curtin JA, Fridlyand J, Kageshita T et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med.353(20), 2135–2147 (2005).
  • Van Raamsdonk CD, Bezrookove V, Green G et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature457(7229), 599–602 (2009).
  • Van Raamsdonk CD, Griewank KG, Crosby MB et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med.363(23), 2191–2199 (2010).
  • Cronin JC, Wunderlich J, Loftus SK et al. Frequent mutations in the MITF pathway in melanoma. Pigment Cell Melanoma Res.22(4), 435–444 (2009).
  • Prickett TD, Agrawal NS, Wei X et al. Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat. Genet.41(10), 1127–1132 (2009).
  • Yarden Y, Kuang WJ, Yang-Feng T et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J.6(11), 3341–3351 (1987).
  • Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature335(6185), 88–89 (1988).
  • Spritz RA, Giebel LB, Holmes SA. Dominant negative and loss of function mutations of the c-kit (mast/stem cell growth factor receptor) proto-oncogene in human piebaldism. Am. J. Hum. Genet.50(2), 261–269 (1992).
  • Lassam N, Bickford S. Loss of c-kit expression in cultured melanoma cells. Oncogene7(1), 51–56 (1992).
  • Huang S, Luca M, Gutman M et al. Enforced c-KIT expression renders highly metastatic human melanoma cells susceptible to stem cell factor-induced apoptosis and inhibits their tumorigenic and metastatic potential. Oncogene13(11), 2339–2347 (1996).
  • Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J. Clin. Oncol.24(26), 4340–4346 (2006).
  • Ugurel S, Hildenbrand R, Zimpfer A et al. Lack of clinical efficacy of imatinib in metastatic melanoma. Br. J. Cancer92(8), 1398–1405 (2005).
  • Wyman K, Atkins MB, Prieto V et al. Multicenter Phase II trial of high-dose imatinib mesylate in metastatic melanoma: significant toxicity with no clinical efficacy. Cancer106(9), 2005–2011 (2006).
  • Kim KB, Eton O, Davis DW et al. Phase II trial of imatinib mesylate in patients with metastatic melanoma. Br. J. Cancer99(5), 734–740 (2008).
  • Lutzky J, Bauer J, Bastian BC. Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res.21(4), 492–493 (2008).
  • Hodi FS, Friedlander P, Corless CL et al. Major response to imatinib mesylate in KIT-mutated melanoma. J. Clin. Oncol.26(12), 2046–2051 (2008).
  • Fisher DE, Barnhill R, Hodi FS et al. Melanoma from bench to bedside: meeting report from the 6th International Melanoma Congress. Pigment Cell Melanoma Res.23(1), 14–26 (2010).
  • Quintas-Cardama A, Lazar AJ, Woodman SE et al. Complete response of stage IV anal mucosal melanoma expressing KIT Val560Asp to the multikinase inhibitor sorafenib. Nat. Clin. Pract. Oncol.5(12), 737–740 (2008).
  • Woodman SE, Trent JC, Stemke-Hale K et al. Activity of dasatinib against L576P KIT mutant melanoma: molecular, cellular, and clinical correlates. Mol. Cancer Ther.8(8), 2079–2085 (2009).
  • Schittenhelm MM, Shiraga S, Schroeder A et al. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res.66(1), 473–481 (2006).
  • Kluger HM, Dudek AZ, McCann C et al. A Phase 2 trial of dasatinib in advanced melanoma. Cancer DOI: 10.1002/cncr.25766 (2010) (Epub ahead of print).
  • Chin L, Garraway LA, Fisher DE. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev.20(16), 2149–2182 (2006).
  • Hocker T, Tsao H. Ultraviolet radiation and melanoma: a systematic review and analysis of reported sequence variants. Hum. Mutat.28(6), 578–588 (2007).
  • Whitwam T, Vanbrocklin MW, Russo ME et al. Differential oncogenic potential of activated RAS isoforms in melanocytes. Oncogene26(31), 4563–4570 (2007).
  • Sweet RW, Yokoyama S, Kamata T et al. The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity. Nature311(5983), 273–275 (1984).
  • Gajewski TF, Niedzwiecki D, Johnson J et al. Phase II study of the farnesyltransferase inhibitor R115777 in advanced melanoma: CALGB 500104. J. Clin. Oncol. (Meeting Abstracts)24(18 Suppl.), 8014 (2006).
  • Haluska FG, Tsao H, Wu H et al. Genetic alterations in signaling pathways in melanoma. Clin. Cancer Res.12(7 Pt 2), 2301s-7s (2006).
  • Stahl JM, Cheung M, Sharma A et al. Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res.63(11), 2881–2890 (2003).
  • Wu H, Goel V, Haluska FG. PTEN signaling pathways in melanoma. Oncogene22(20), 3113–3122 (2003).
  • Mirmohammadsadegh A, Marini A, Nambiar S et al. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res.66(13), 6546–6552 (2006).
  • Tsao H, Goel V, Wu H, Yang G, Haluska FG. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest. Dermatol.122(2), 337–341 (2004).
  • Goel VK, Lazar AJ, Warneke CL, Redston MS, Haluska FG. Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J. Invest. Dermatol.126(1), 154–160 (2006).
  • Curtin JA, Stark MS, Pinkel D, Hayward NK, Bastian BC. PI3-kinase subunits are infrequent somatic targets in melanoma. J. Invest. Dermatol.126(7), 1660–1663 (2006).
  • Davies MA, Stemke-Hale K, Tellez C et al. A novel AKT3 mutation in melanoma tumours and cell lines. Br. J. Cancer99(8), 1265–1268 (2008).
  • Davies MA, Stemke-Hale K, Lin E et al. Integrated molecular and clinical analysis of AKT activation in metastatic melanoma. Clin. Cancer Res.15(24), 7538–7546 (2009).
  • Margolin K, Longmate J, Baratta T et al. CCI-779 in metastatic melanoma: a Phase II trial of the California Cancer Consortium. Cancer104(5), 1045–1048 (2005).
  • Rao RD, Allred JB, Windschitl HE et al. N0377: results of NCCTG Phase II trial of the mTOR inhibitor RAD-001 in metastatic melanoma. J. Clin. Oncol. (Meeting Abstracts)25(18 Suppl.), 8530 (2007).
  • O’Reilly KE, Rojo F, She QB et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res.66(3), 1500–1508 (2006).
  • Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J. Clin. Oncol.28(6), 1075–1083 (2010).
  • Ihle NT, Lemos R Jr, Wipf P et al. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance. Cancer Res.69(1), 143–150 (2009).
  • Jaiswal BS, Janakiraman V, Kljavin NM et al. Combined targeting of BRAF and CRAF or BRAF and PI3K effector pathways is required for efficacy in NRAS mutant tumors. PLoS One4(5), e5717 (2009).
  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature417(6892), 949–954 (2002).
  • Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell. Biol.5(11), 875–885 (2004).
  • Wellbrock C, Hurlstone A. BRAF as therapeutic target in melanoma. Biochem. Pharmacol.80(5), 561–567 (2010).
  • Wan PT, Garnett MJ, Roe SM et al. Mechanism of activation of the RAF–ERK signaling pathway by oncogenic mutations of B-RAF. Cell116(6), 855–867 (2004).
  • Pollock PM, Harper UL, Hansen KS et al. High frequency of BRAF mutations in nevi. Nat. Genet.33(1), 19–20 (2003).
  • Heidorn SJ, Milagre C, Whittaker S et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell140(2), 209–221 (2010).
  • Garnett MJ, Rana S, Paterson H, Barford D, Marais R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol. Cell20(6), 963–969 (2005).
  • Dumaz N, Hayward R, Martin J et al. In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res.66(19), 9483–9491 (2006).
  • Montagut C, Sharma SV, Shioda T et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res.68(12), 4853–4861 (2008).
  • Smalley KS, Xiao M, Villanueva J et al. CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene28(1), 85–94 (2009).
  • Karasarides M, Chiloeches A, Hayward R et al. B-RAF is a therapeutic target in melanoma. Oncogene23(37), 6292–6298 (2004).
  • Wilhelm SM, Carter C, Tang L et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res.64(19), 7099–7109 (2004).
  • Eisen T, Ahmad T, Flaherty KT et al. Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br. J. Cancer95(5), 581–586 (2006).
  • McDermott DF, Sosman JA, Gonzalez R et al. Double-blind randomized Phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: a report from the 11715 Study Group. J. Clin. Oncol.26(13), 2178–2185 (2008).
  • Hauschild A, Agarwala SS, Trefzer U et al. Results of a Phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J. Clin. Oncol.27(17), 2823–2830 (2009).
  • Ramurthy S, Subramanian S, Aikawa M et al. Design and synthesis of orally bioavailable benzimidazoles as Raf kinase inhibitors. J. Med. Chem.51(22), 7049–7052 (2008).
  • Schwartz GK, Robertson S, Shen A et al. A Phase I study of XL281, a selective oral RAF kinase inhibitor, in patients (pts) with advanced solid tumors. J. Clin. Oncol. (Meeting Abstracts)27(15S), 3513 (2009).
  • King AJ, Patrick DR, Batorsky RS et al. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res.66(23), 11100–11105 (2006).
  • Kefford R, Arkenau H, Brown MP et al. Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J. Clin. Oncol. (Meeting Abstracts)28(15 Suppl.), 8503 (2010).
  • Long GV, Kefford RF, Carr PJ et al. Phase 1/2 study of GSK2118436, a selective inhibitor of V600 mutant (mut) BRAF kinase: evidence of activity in melanoma brain metastases (mets). Ann. Oncol.21(Suppl. 8), LBA27 (2010).
  • Tsai J, Lee JT, Wang W et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl Acad. Sci. USA105(8), 3041–3046 (2008).
  • Flaherty K, Puzanov I, Sosman J et al. Phase I study of PLX4032: proof of concept for V600E BRAF mutation as a therapeutic target in human cancer. J. Clin. Oncol. (Meeting Abstracts)27(15S), 9000 (2009).
  • Flaherty KT, Puzanov I, Kim KB et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med.363(9), 809–819 (2010).
  • Johannessen CM, Boehm JS, Kim SY et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature468(7326), 968–972 (2010).
  • Nazarian R, Shi H, Wang Q et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature468(7326), 973–977 (2010).
  • Villanueva J, Vultur A, Lee JT et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell18(6), 683–695 (2010).
  • Halaban R, Zhang W, Bacchiocchi A et al. PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res.23(2), 190–200 (2010).
  • Solit DB, Garraway LA, Pratilas CA et al.BRAF mutation predicts sensitivity to MEK inhibition. Nature439(7074), 358–362 (2006).
  • Lorusso PM, Adjei AA, Varterasian M et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J. Clin. Oncol.23(23), 5281–5293 (2005).
  • LoRusso PM, Krishnamurthi SS, Rinehart JJ et al. Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin. Cancer Res.16(6), 1924–1937 (2010).
  • Adjei AA, Cohen RB, Franklin W et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J. Clin. Oncol.26(13), 2139–2146 (2008).
  • Banerji U, Camidge DR, Verheul HM et al. The first-in-human study of the hydrogen sulfate (Hyd-sulfate) capsule of the MEK1/2 inhibitor AZD6244 (ARRY-142886): a Phase I open-label multicenter trial in patients with advanced cancer. Clin. Cancer Res.16(5), 1613–1623 (2010).
  • Dummer R, Robert C, Chapman PB et al. AZD6244 (ARRY-142886) vs temozolomide (TMZ) in patients (pts) with advanced melanoma: an open-label, randomized, multicenter, Phase II study. J. Clin. Oncol. (Meeting Abstracts)26(15 Suppl.), 9033 (2008).
  • Emery CM, Vijayendran KG, Zipser MC et al.MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc. Natl Acad. Sci. USA106(48), 20411–20416 (2009).
  • Ladanyi A, Kiss J, Somlai B et al. Density of DC-LAMP(+) mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol. Immunother.56(9), 1459–1469 (2007).
  • Davis ID, Brady B, Kefford RF et al. Clinical and biological efficacy of recombinant human interleukin-21 in patients with stage IV malignant melanoma without prior treatment: a Phase IIa trial. Clin. Cancer Res.15(6), 2123–2129 (2009).
  • Contardi E, Palmisano GL, Tazzari PL et al. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int. J. Cancer117(4), 538–550 (2005).
  • Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer: preclinical background: CTLA-4 and PD-1 blockade. Semin. Oncol.37(5), 430–439 (2010).
  • Downey SG, Klapper JA, Smith FO et al. Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin. Cancer Res.13(22 Pt 1), 6681–6688 (2007).
  • Hersh EM, Weber JS, Powderly JD et al. Disease control and long-term survival in chemotherapy-naive patients with advanced melanoma treated with ipilimumab (MDX- 010) with or without dacarbazine. J. Clin. Oncol. (Meeting Abstracts)26(15 Suppl.), 9022 (2008).
  • Beck KE, Blansfield JA, Tran KQ et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J. Clin. Oncol.24(15), 2283–2289 (2006).
  • O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med.363(8), 711–723 (2010).
  • Garber K. Industry makes strides in melanoma. Nat. Biotechnol.28(8), 763–764 (2010).
  • Camacho LH, Antonia S, Sosman J et al. Phase I/II trial of tremelimumab in patients with metastatic melanoma. J. Clin. Oncol.27(7), 1075–1081 (2009).
  • Ribas A, Hauschild A, Kefford R et al. Phase III, open-label, randomized, comparative study of tremelimumab (CP-675,206) and chemotherapy (temozolomide [TMZ] or dacarbazine [DTIC]) in patients with advanced melanoma. J. Clin. Oncol. (Meeting Abstracts)26(15 Suppl.), LBA9011 (2008).
  • Brahmer JR, Drake CG, Wollner I et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol.28(19), 3167–3175 (2010).
  • Pleasance ED, Cheetham RK, Stephens PJ et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature463(7278), 191–196 (2010).
  • Montagut C, Sharma SV, Shioda T et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res.68(12), 4853–4861 (2008).
  • Emery CM, Vijayendran KG, Zipser MC et al.MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc. Natl Acad. Sci. USA106(48), 20411–20416 (2009).
  • Paraiso KH, Fedorenko IV, Cantini LP et al. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br. J. Cancer102(12), 1724–1730 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.