762
Views
93
CrossRef citations to date
0
Altmetric
Theme: Brain/Neurologic - Review

Molecular mechanisms of temozolomide resistance in glioblastoma multiforme

&
Pages 635-642 | Published online: 10 Jan 2014

References

  • Ohgaki H, Kleihues P. Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci.100(12), 2235–2241 (2009).
  • Purow B, Schiff D. Advances in the genetics of glioblastoma: are we reaching critical mass? Nat. Rev. Neurol.5(8), 419–426 (2009).
  • Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science321(5897), 1807–1812 (2008).
  • Yan H, Parsons DW, Jin G et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med.360(8), 765–773 (2009).
  • Tso CL, Freije WA, Day A et al. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res.66(1), 159–167 (2006).
  • Maher EA, Brennan C, Wen PY et al. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res.66(23), 11502–11513 (2006).
  • Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol.170(5), 1445–1453 (2007).
  • Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre Phase III trial. Lancet Oncol.7(5), 392–401 (2006).
  • Westphal M, Hilt DC, Bortey E et al. A Phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro. Oncol.5(2), 79–88 (2003).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Kole M, Rock J. Malignant glioma surgery: Complication avoidance. Neurosurg. Quart.12(3), 251–258 (2002).
  • Stummer W, van den Bent MJ, Westphal M. Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: new arguments in an old discussion. Acta Neurochir. (Wien)153(6), 1211–1218 (2011).
  • Laperriere N, Zuraw L, Cairncross G. Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother. Oncol.64(3), 259–273 (2002).
  • Stupp R, Hegi ME, Mason WP et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised Phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol.10(5), 459–466 (2009).
  • Koshy M, Villano JL, Dolecek TA et al. Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J. Neurooncol.107(1), 207–212 (2011).
  • Rock K, McArdle O, Forde P et al. A clinical review of treatment outcomes in glioblastoma multiforme – the validation in a non-trial population of the results of a randomised Phase III clinical trial: has a more radical approach improved survival? Br. J. Radiol. doi:10.1259/bjr/83796755 (2012) (Epub ahead of print).
  • Denny BJ, Wheelhouse RT, Stevens MF, Tsang LL, Slack JA. NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochemistry33(31), 9045–9051 (1994).
  • Johannessen TC, Bjerkvig R, Tysnes BB. DNA repair and cancer stem-like cells--potential partners in glioma drug resistance? Cancer Treat. Rev.34(6), 558–567 (2008).
  • Alexander BM, Pinnell N, Wen PY, D’Andrea A. Targeting DNA repair and the cell cycle in glioblastoma. J. Neurooncol.107(3), 463–477 (2011).
  • Weller M, Stupp R, Reifenberger G et al.MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat. Rev. Neurol.6(1), 39–51 (2010).
  • Grasbon-Frodl EM, Kreth FW, Ruiter M et al. Intratumoral homogeneity of MGMT promoter hypermethylation as demonstrated in serial stereotactic specimens from anaplastic astrocytomas and glioblastomas. Int. J. Cancer121(11), 2458–2464 (2007).
  • Felsberg J, Thon N, Eigenbrod S et al. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int. J. Cancer129(3), 659–670 (2011).
  • Gilbert MR, Wang M, Aldape KD et al. RTOG 0525: a randomized Phase III trial comparing standard adjuvant temozolomide (TMZ) with a dose-dense (dd) schedule in newly diagnosed glioblastoma (GBM). Presented at: ASCO Annual Meeting. Chicago, IL, USA, 3–7 June 2011.
  • Wick W, Steinbach J, Combs SE et al. Enzastaurin (ENZ) before and concomitant with radiation therapy (RTX) followed by ENZ maintenance therapy in patients with newly diagnosed glioblastoma (GBM) without hypermethylation of the O6-methylguanyl DNA-methyltransferase (MGMT) promoter: a multicenter, open-label, uncontrolled Phase II study. Presented at: ASCO Annual Meeting. Chicago, IL, USA, 3–7 June 2011.
  • Brandes AA, Tosoni A, Franceschi E et al. Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: correlation with MGMT promoter methylation status. J. Clin. Oncol.27(8), 1275–1279 (2009).
  • Wick W, Stupp R, Beule AC et al. A novel tool to analyze MRI recurrence patterns in glioblastoma. Neuro. Oncol.10(6), 1019–1024 (2008).
  • Brandes AA, Franceschi E, Tosoni A et al.MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J. Clin. Oncol.26(13), 2192–2197 (2008).
  • Chakravarti A, Erkkinen MG, Nestler U et al. Temozolomide-mediated radiation enhancement in glioblastoma: a report on underlying mechanisms. Clin. Cancer Res.12(15), 4738–4746 (2006).
  • Quinn JA, Desjardins A, Weingart J et al. Phase I trial of temozolomide plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J. Clin. Oncol.23(28), 7178–7187 (2005).
  • Quinn JA, Pluda J, Dolan ME et al. Phase II trial of carmustine plus O(6)-benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma. J. Clin. Oncol.20(9), 2277–2283 (2002).
  • Hegi ME, Diserens AC, Godard S et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res.10(6), 1871–1874 (2004).
  • Hegi ME, Diserens AC, Gorlia T et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med.,352(10), 997–1003 (2005).
  • Preusser M, Charles Janzer R, Felsberg J et al. Anti-O6-methylguanine-methyltransferase (MGMT) immunohistochemistry in glioblastoma multiforme: observer variability and lack of association with patient survival impede its use as clinical biomarker. Brain Pathol.18(4), 520–532 (2008).
  • Rodriguez FJ, Thibodeau SN, Jenkins RB et al. MGMT immunohistochemical expression and promoter methylation in human glioblastoma. Appl. Immunohistochem. Mol. Morphol.16(1), 59–65 (2008).
  • Lai A, Lalezari S, Chou AP et al. Prediction of GBM outcome using combined analysis of MGMT protein expression and promoter methylation. Presented at: ASCO Annual Meeting. Chicago, IL, USA, 3–7 June 2011.
  • Spiegl-Kreinecker S, Pirker C, Filipits M et al. O6-methylguanine DNA methyltransferase protein expression in tumor cells predicts outcome of temozolomide therapy in glioblastoma patients. Neuro. Oncol.12(1), 28–36 (2010).
  • Lavon I, Fuchs D, Zrihan D et al. Novel mechanism whereby nuclear factor kappaB mediates DNA damage repair through regulation of O(6)-methylguanine-DNA-methyltransferase. Cancer Res.67(18), 8952–8959 (2007).
  • Hunter C, Smith R, Cahill DP et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res.66(8), 3987–3991 (2006).
  • Cahill DP, Levine KK, Betensky RA et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin. Cancer Res.13(7), 2038–2045 (2007).
  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455(7216), 1061–1068 (2008).
  • Yip S, Miao J, Cahill DP et al.MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin. Cancer Res.15(14), 4622–4629 (2009).
  • Stark AM, Doukas A, Hugo HH, Mehdorn HM. The expression of mismatch repair proteins MLH1, MSH2 and MSH6 correlates with the Ki67 proliferation index and survival in patients with recurrent glioblastoma. Neurol. Res. doi:10.1179/016164110X12645013515052 (2010) (Epub ahead of print).
  • Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De Vecchis L. Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol. Res.56(4), 275–287 (2007).
  • Trivedi RN, Almeida KH, Fornsaglio JL, Schamus S, Sobol RW. The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res.65(14), 6394–6400 (2005).
  • Silber JR, Bobola MS, Blank A et al. The apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma cell resistance to alkylating agents and is elevated by oxidative stress. Clin. Cancer Res.8(9), 3008–3018 (2002).
  • Agnihotri S, Wolf A, Munoz DM et al. A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas. J. Exp. Med.208(4), 689–702 (2011).
  • Agnihotri S, Gajadhar AS, Ternamian C et al. Alkylpurine-DNA-N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients. J. Clin. Invest.122(1), 253–266 (2012).
  • Wilson DM 3rd, Simeonov A. Small molecule inhibitors of DNA repair nuclease activities of APE1. Cell. Mol. Life Sci.67(21), 3621–3631 (2010).
  • Abbotts R, Madhusudan S. Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat. Rev.36(5), 425–435 (2010).
  • Mohammed MZ, Vyjayanti VN, Laughton CA et al. Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines. Br. J. Cancer104(4), 653–663 (2011).
  • Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer10(4), 293–301 (2010).
  • Saleh-Gohari N, Bryant HE, Schultz N, Parker KM, Cassel TN, Helleday T. Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol. Cell. Biol.25(16), 7158–7169 (2005).
  • Farmer H, McCabe N, Lord CJ et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434(7035), 917–921 (2005).
  • Bryant HE, Schultz N, Thomas HD et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature434(7035), 913–917 (2005).
  • Annunziata CM, O’Shaughnessy J. Poly (ADP-ribose) polymerase as a novel therapeutic target in cancer. Clin. Cancer Res.16(18), 4517–4526 (2010).
  • Cheng CL, Johnson SP, Keir ST et al. Poly(ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair-deficient malignant glioma xenograft. Mol. Cancer Ther.4(9), 1364–1368 (2005).
  • Miknyoczki SJ, Jones-Bolin S, Pritchard S et al. Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol. Cancer Ther.2(4), 371–382 (2003).
  • Tentori L, Leonetti C, Scarsella M et al. Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma. Clin. Cancer Res.9(14), 5370–5379 (2003).
  • Quiros S, Roos WP, Kaina B. Rad51 and BRCA2 – new molecular targets for sensitizing glioma cells to alkylating anticancer drugs. PLoS One6(11), e27183 (2011).
  • Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature367(6464), 645–648 (1994).
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med.3(7), 730–737 (1997).
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100(7), 3983–3988 (2003).
  • Hemmati HD, Nakano I, Lazareff JA et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA100(25), 15178–15183 (2003).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63(18), 5821–5828 (2003).
  • Galli R, Binda E, Orfanelli U et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res.64(19), 7011–7021 (2004).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature432(7015), 396–401 (2004).
  • O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445(7123), 106–110 (2007).
  • Prince ME, Sivanandan R, Kaczorowski A et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA104(3), 973–978 (2007).
  • Schatton T, Murphy GF, Frank NY et al. Identification of cells initiating human melanomas. Nature451(7176), 345–349 (2008).
  • Cheng L, Bao S, Rich JN. Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem. Pharmacol.80(5), 654–665 (2010).
  • Yuan X, Curtin J, Xiong Y et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene23(58), 9392–9400 (2004).
  • Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444(7120), 756–760 (2006).
  • Liu G, Yuan X, Zeng Z et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer5, 67 (2006).
  • Johannessen TC, Wang J, Skaftnesmo KO et al. Highly infiltrative brain tumours show reduced chemosensitivity associated with a stem cell-like phenotype. Neuropathol. Appl. Neurobiol.35(4), 380–393 (2009).
  • Murat A, Migliavacca E, Gorlia T et al. Stem cell-related ‘self-renewal’ signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J. Clin. Oncol.26(18), 3015–3024 (2008).
  • Bao S, Wu Q, Sathornsumetee S et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res.66(16), 7843–7848 (2006).
  • Li Z, Bao S, Wu Q et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell15(6), 501–513 (2009).
  • Soeda A, Park M, Lee D et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene28(45), 3949–3959 (2009).
  • Bao S, Wu Q, Li Z et al. Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res.68(15), 6043–6048 (2008).
  • Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov.8(10), 806–823 (2009).
  • Piccirillo SG, Reynolds BA, Zanetti N et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature444(7120), 761–765 (2006).
  • Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu J, Kondo T. Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation. Cancer Res.69(20), 7953–7959 (2009).
  • Prestegarden L, Enger PO. Cancer stem cells in the central nervous system – a critical review. Cancer Res.70(21), 8255–8258 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.