93
Views
28
CrossRef citations to date
0
Altmetric
Theme: Skin - Review

New vitamin D analogs as potential therapeutics in melanoma

, &
Pages 585-599 | Published online: 10 Jan 2014

References

  • Reichrath J. Vitamin D and the skin: an ancient friend, revisited. Exp. Dermatol.16(7), 618–625 (2007).
  • Holick MF. Vitamin D: a millenium perspective. J. Cell. Biochem.88(2), 296–307 (2003).
  • White JH. Profiling 1,25-dihydroxyvitamin D3-regulated gene expression by microarray analysis. J. Steroid Biochem. Mol. Biol.89–90, 239–244 (2004).
  • Lehmann B. Role of the vitamin D3 pathway in healthy and diseased skin – facts, contradictions and hypotheses. Exp. Dermatol.18(2), 97–108 (2009).
  • Zmijewski MA, Li W, Zjawiony JK et al. Photo-conversion of two epimers (20R and 20S) of pregna-5,7-diene-3beta, 17alpha, 20-triol and their bioactivity in melanoma cells. Steroids74(2), 218–228 (2009).
  • Zbytek B, Janjetovic Z, Tuckey RC et al. 20-hydroxyvitamin D3, a product of vitamin D3 hydroxylation by cytochrome P450scc, stimulates keratinocyte differentiation. J. Invest. Dermatol.128(9), 2271–2280 (2008).
  • Ebert R, Schütze N, Adamski J, Jakob F. Vitamin D signaling is modulated on multiple levels in health and disease. Mol. Cell. Endocrinol.248(1–2), 149–159 (2006).
  • Holick MF. Vitamin D deficiency. N. Engl. J. Med.357(3), 266–281 (2007).
  • Bikle DD. Vitamin D: an ancient hormone. Exp. Dermatol.20(1), 7–13 (2011).
  • Bikle D. Nonclassic actions of vitamin D. J. Clin. Endocrinol. Metab.94(1), 26–34 (2009).
  • Bikle DD. Vitamin D: newly discovered actions require reconsideration of physiologic requirements. Trends Endocrinol. Metab.21(6), 375–384 (2010).
  • Glass D, Lens M, Swaminathan R, Spector TD, Bataille V. Pigmentation and vitamin D metabolism in Caucasians: low vitamin D serum levels in fair skin types in the UK. PLoS ONE4(8), e6477 (2009).
  • Grant WB. In defense of the sun: an estimate of changes in mortality rates in the United States if mean serum 25-hydroxyvitamin D levels were raised to 45 ng/ml by solar ultraviolet-B irradiance. Dermatoendocrinol.1(4), 207–214 (2009).
  • Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat. Rev. Cancer7(9), 684–700 (2007).
  • Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocr. Rev.26(5), 662–687 (2005).
  • Pinczewski J, Slominski A. The potential role of vitamin D in the progression of benign and malignant melanocytic neoplasms. Exp. Dermatol.19(10), 860–864 (2010).
  • Dummer R, Hauschild A, Jost L. Cutaneous malignant melanoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann. Oncol.19(Suppl. 2), ii86–ii88 (2008).
  • Garbe C, Peris K, Hauschild A et al. Diagnosis and treatment of melanoma: European consensus-based interdisciplinary guideline. Eur. J. Cancer46(2), 270–283 (2010).
  • Egan KM. Vitamin D and melanoma. Ann. Epidemiol.19(7), 455–461 (2009).
  • Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev.84(4), 1155–1228 (2004).
  • Chang YM, Barrett JH, Bishop DT et al. Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls. Int. J. Epidemiol.38(3), 814–830 (2009).
  • Bataille V, de Vries E. Melanoma – part 1: epidemiology, risk factors, and prevention. BMJ337, a2249 (2008).
  • Brozyna A, Zbytek B, Granese J, Carlson AJ, Ross J, Slominski A. Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma. Expert. Rev. Dermatol.2(4), 451–469 (2007).
  • Cummins DL, Cummins JM, Pantle H, Silverman MA, Leonard AL, Chanmugam A. Cutaneous malignant melanoma. Mayo Clin. Proc.81(4), 500–507 (2006).
  • Newton-Bishop JA, Chang Y-M, Elliott F et al. Relationship between sun exposure and melanoma risk for tumours in different body sites in a large case–control study in a temperate climate. Eur. J. Cancer47(5), 732–741 (2011).
  • Brown AJ, Slatopolsky E. Vitamin D analogs: therapeutic applications and mechanisms for selectivity. Mol. Aspects Med.29(6), 433–452 (2008).
  • Berwick M, Armstrong BK, Ben-Porat L et al. Sun exposure and mortality from melanoma. J. Natl Cancer Inst.97(3), 195–199 (2005).
  • Geller AC, Annas GD. Epidemiology of melanoma and nonmelanoma skin cancer. Semin. Oncol. Nursing19(1), 2–11 (2003).
  • Gandini S, Raimondi S, Gnagnarella P, Doré J-F, Maisonneuve P, Testori A. Vitamin D and skin cancer: a meta-analysis. Eur. J. Cancer45(4), 634–641 (2009).
  • Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocr. Rev.21(5), 457–487 (2000).
  • Hosoi J, Abe E, Suda T, Kuroki T. Regulation of melanin synthesis of B16 mouse melanoma cells by 1(alpha),25-dihydroxyvitamin D3 and retinoic acid. Cancer Res.45(4), 1474–1478 (1985).
  • Watabe H, Soma Y, Kawa Y et al. Differentiation of murine melanocyte precursors induced by 1,25-dihydroxyvitamin D3 is associated with the stimulation of endothelin B receptor expression. J. Invest. Dermatol.119(3), 583–589 (2002).
  • Bogh MK, Schmedes AV, Philipsen PA, Thieden E, Wulf HC. Vitamin D production after UVB exposure depends on baseline vitamin D and total cholesterol but not on skin pigmentation. J. Invest. Dermatol.130(2), 546–553 (2010).
  • Mansur CP, Gordon PR, Ray S, Holick MF, Gilchrest BA. Vitamin D, its precursors, and metabolites do not affect melanization of cultured human melanocytes. J. Invest. Dermatol.91(1), 16–21 (1988).
  • Dixon KM, Norman AW, Sequeira VB et al. 1alpha,25(OH)-vitamin D and a nongenomic vitamin D analogue inhibit ultraviolet radiation-induced skin carcinogenesis. Cancer Prev. Res.4(9), 1485–1494 (2011).
  • Dixon KM, Sequeira VB, Camp AJ, Mason RS. Vitamin D-fence. Photochem. Photobiol. Sci.9(4), 564–570 (2010).
  • Fedirko V, Bostick RM, Long Q et al. Effects of supplemental vitamin D and calcium on oxidative DNA damage marker in normal colorectal mucosa: a randomized clinical trial. Cancer Epidemiol. Biomarkers Prev.19(1), 280–291 (2010).
  • Langberg M, Rotem C, Fenig E, Koren R, Ravid A. Vitamin D protects keratinocytes from deleterious effects of ionizing radiation. Br. J. Dermatol.160(1), 151–161 (2009).
  • Muller K, Schinn M, Reichrath J, Meineke V. 1alpha,25-dihydroxyvitamin D3 modulates the response of human keratinocytes to ionizing radiation exposure. Anticancer Res.26(4A), 2735–2741 (2006).
  • Robert C, Thomas L, Bondarenko I et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med.364(26), 2517–2526 (2011).
  • Chapman PB, Hauschild A, Robert C et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med.364(26), 2507–2516 (2011).
  • Carvajal RD, Antonescu CR, Wolchok JD et al. KIT as a therapeutic target in metastatic melanoma. JAMA305(22), 2327–2334 (2011).
  • Roukos DH. PLX4032 and melanoma: resistance, expectations and uncertainty. Expert Rev. Anticancer Ther.11(3), 325–328 (2011).
  • Brożyna AA, Jozwicki W, Janjetovic Z, Slominski AT. Expression of vitamin D receptor decreases during progression of pigmented skin lesions. Hum. Pathol.42(5), 618–631 (2011).
  • Reichrath J, Nurnberg B. Cutaneous vitamin D synthesis versus skin cancer development: the Janus faces of solar UV-radiation. Dermatoendocrinol.1(5), 253–261 (2009).
  • Essa S, Denzer N, Mahlknecht U et al. VDR microRNA expression and epigenetic silencing of vitamin D signaling in melanoma cells. J. Steroid Biochem. Mol. Biol.121(1–2), 110–113 (2010).
  • Mocellin S, Nitti D. Vitamin D receptor polymorphisms and the risk of cutaneous melanoma: a systematic review and meta-analysis. Cancer113(9), 2398–2407 (2008).
  • Köstner K, Denzer N, Müller CS, Klein R, Tilgen W, Reichrath J. The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer: a review of the literature. Anticancer Res.29(9), 3511–3536 (2009).
  • Randerson-Moor JA, Taylor JC, Elliott F et al. Vitamin D receptor gene polymorphisms, serum 25-hydroxyvitamin D levels, and melanoma: UK case–control comparisons and a meta-analysis of published VDR data. Eur. J. Cancer45(18), 3271–3281 (2009).
  • Gapska P, Scott RJ, Serrano-Fernandez P et al. Vitamin D receptor variants and the malignant melanoma risk: a population-based study. Cancer Epidemiol.33(2), 103–107 (2009).
  • Han J, Colditz GA, Hunter DJ. Polymorphisms in the MTHFR and VDR genes and skin cancer risk. Carcinogenesis28(2), 390–397 (2007).
  • Hutchinson PE, Osborne JE, Lear JT et al. Vitamin D receptor polymorphisms are associated with altered prognosis in patients with malignant melanoma. Clin. Cancer Res.6(2), 498–504 (2000).
  • Li C, Liu Z, Wang LE et al. Haplotype and genotypes of the VDR gene and cutaneous melanoma risk in non-Hispanic whites in Texas: a case–control study. Int. J. Cancer122(9), 2077–2084 (2008).
  • Li C, Liu Z, Zhang Z et al. Genetic variants of the vitamin D receptor gene alter risk of cutaneous melanoma. J. Invest. Dermatol.127(2), 276–280 (2007).
  • Santonocito C, Capizzi R, Concolino P et al. Association between cutaneous melanoma, Breslow thickness and vitamin D receptor BsmI polymorphism. Br. J. Dermatol.156(2), 277–282 (2007).
  • Halsall JA, Osborne JE, Epstein MP, Pringle JH, Hutchinson PE. The unfavorable effect of the A allele of the vitamin D receptor promoter polymorphism A-1012G has different mechanisms related to susceptibility and outcome of malignant melanoma. Dermatoendocrinol.1(1), 54–57 (2009).
  • Halsall JA, Osborne JE, Potter L, Pringle JH, Hutchinson PE. A novel polymorphism in the 1A promoter region of the vitamin D receptor is associated with altered susceptibilty and prognosis in malignant melanoma. Br. J. Cancer91(4), 765–770 (2004).
  • Povey JE, Darakhshan F, Robertson K et al. DNA repair gene polymorphisms and genetic predisposition to cutaneous melanoma. Carcinogenesis28(5), 1087–1093 (2007).
  • Field S, Newton-Bishop JA. Melanoma and vitamin D. Mol. Oncol.5(2), 197–214 (2011).
  • Holick MF. Vitamin D: its role in cancer prevention and treatment. Prog. Biophys. Mol. Biol.92(1), 49–59 (2006).
  • Janjetovic Z, Brozyna AA, Tuckey RC et al. High basal NF-kappaB activity in nonpigmented melanoma cells is associated with an enhanced sensitivity to vitamin D3 derivatives. Br. J. Cancer105(12), 1874–1884 (2011).
  • Slominski AT, Kim TK, Janjetovic Z et al. 20-hydroxyvitamin D2 is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells. Am. J. Physiol. Cell. Physiol.300(3), C526–C541 (2011).
  • Reichrath J, Rech M, Moeini M, Meese E, Tilgen W, Seifert M. In vitro comparison of the vitamin D endocrine system in 1,25(OH)2D3-responsive and -resistant melanoma cells. Cancer Biol. Ther.6(1), 48–55 (2007).
  • Slominski AT, Zmijewski MA, Semak I et al. Sequential metabolism of 7-dehydrocholesterol to steroidal 5,7-dienes in adrenal glands and its biological implication in the skin. PLoS ONE4(2), e4309 (2009).
  • Zmijewski MA, Li W, Chen J et al. Synthesis and photochemical transformation of 3beta,21-dihydroxypregna-5,7-dien-20-one to novel secosteroids that show anti-melanoma activity. Steroids76(1–2), 193–203 (2011).
  • Colston K, Colston MJ, Feldman D. 1,25-dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology108(3), 1083–1086 (1981).
  • Seifert M, Rech M, Meineke V, Tilgen W, Reichrath J. Differential biological effects of 1,25-dihydroxyvitamin D3 on melanoma cell lines in vitro. J. Steroid Biochem. Mol. Biol.89–90, 375–379 (2004).
  • Gruber BM, Anuszewska EL. Influence of vitamin D3 metabolites on cell proliferation and cytotoxicity of adriamycin in human normal and neoplastic cells. Toxicol. In Vitro16(6), 663–667 (2002).
  • Hansen CM, Madsen MW, Arensbak B, Skak-Nielsen T, Latini S, Binderup L. Down-regulation of laminin-binding integrins by 1 alpha,25-dihydroxyvitamin D3 in human melanoma cells in vitro. Cell Adhes. Commun.5(2), 109–120 (1998).
  • Evans SR, Houghton AM, Schumaker L et al. Vitamin D receptor and growth inhibition by 1,25-dihydroxyvitamin D3 in human malignant melanoma cell lines. J. Surg. Res.61(1), 127–133 (1996).
  • Yudoh K, Matsuno H, Kimura T. 1alpha,25-dihydroxyvitamin D3 inhibits in vitro invasiveness through the extracellular matrix and in vivo pulmonary metastasis of B16 mouse melanoma. J. Lab. Clin. Med.133(2), 120–128 (1999).
  • Pelczynska M, Switalska M, Maciejewska M, Jaroszewicz I, Kutner A, Opolski A. Antiproliferative activity of vitamin D compounds in combination with cytostatics. Anticancer Res.26(4A), 2701–2705 (2006).
  • Danielsson C, Fehsel K, Polly P, Carlberg C. Differential apoptotic response of human melanoma cells to 1 alpha,25-dihydroxyvitamin D3 and its analogues. Cell Death Differ.5(11), 946–952 (1998).
  • Fleet JC, Desmet M, Johnson R, Li Y. Vitamin D and cancer: a review of molecular mechanisms. Biochem. J.441(1), 61–76 (2012).
  • Frampton RJ, Omond SA, Eisman JA. Inhibition of human cancer cell growth by 1,25-dihydroxyvitamin D3 metabolites. Cancer Res.43(9), 4443–4447 (1983).
  • Oikawa A, Nakayasu M. Stimulation of melanogenesis in cultured melanoma cells by calciferols. FEBS Letters42(1), 32–35 (1974).
  • Sertznig P, Seifert M, Tilgen W, Reichrath J. Activation of vitamin D receptor (VDR)- and peroxisome proliferator-activated receptor (PPAR)-signaling pathways through 1,25(OH)(2)D(3) in melanoma cell lines and other skin-derived cell lines. Dermatoendocrinol.1(4), 232–238 (2009).
  • Guryev O, Carvalho RA, Usanov S, Gilep A, Estabrook RW. A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1). Proc. Natl Acad. Sci. USA100(25), 14754–14759 (2003).
  • Slominski A, Zjawiony J, Wortsman J et al. A novel pathway for sequential transformation of 7-dehydrocholesterol and expression of the P450scc system in mammalian skin. Eur. J. Biochem.271(21), 4178–4188 (2004).
  • Zmijewski MA, Li W, Zjawiony JK et al. Synthesis and photo-conversion of androsta- and pregna-5,7-dienes to vitamin D3-like derivatives. Photochem. Photobiol. Sci.7(12), 1570–1576 (2008).
  • Kim T-K, Chen J, Li W et al. A new steroidal 5,7-diene derivative, 3[beta]-hydroxyandrosta-5,7-diene-17[beta]-carboxylic acid, shows potent anti-proliferative activity. Steroids75(3), 230–239 (2010).
  • Slominski A, Semak I, Wortsman J et al. An alternative pathway of vitamin D metabolism. Cytochrome P450scc (CYP11A1)-mediated conversion to 20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2. FEBS J.273(13), 2891–2901 (2006).
  • Nguyen MN, Slominski A, Li W, Ng YR, Tuckey RC. Metabolism of vitamin D2 to 17,20,24-trihydroxyvitamin D2 by cytochrome p450scc (CYP11A1). Drug Metab. Dispos.37(4), 761–767 (2009).
  • Valrance ME, Welsh J. Breast cancer cell regulation by high-dose vitamin D compounds in the absence of nuclear vitamin D receptor. J. Steroid Biochem. Mol. Biol.89–90(1–5), 221–225 (2004).
  • Nemere I, Garbi N, Hammerling GJ, Khanal RC. Intestinal cell calcium uptake and the targeted knockout of the 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) receptor/PDIA3/Erp57. J. Biol. Chem.285(41), 31859–31866 (2010).
  • Slominski AT, Janjetovic Z, Fuller BE et al. Products of vitamin D3 or 7-dehydrocholesterol metabolism by cytochrome P450scc show anti-leukemia effects, having low or absent calcemic activity. PLoS ONE5(3), e9907 (2010).
  • Mizwicki MT, Menegaz D, Yaghmaei S, Henry HL, Norman AW. A molecular description of ligand binding to the two overlapping binding pockets of the nuclear vitamin D receptor (VDR): structure–function implications. J. Steroid Biochem. Mol. Biol.121(1–2), 98–105 (2010).
  • Menegaz D, Mizwicki MT, Barrientos-Duran A, Chen N, Henry HL, Norman AW. Vitamin D receptor (VDR) regulation of voltage-gated chloride channels by ligands preferring a VDR-alternative pocket (VDR-AP). Mol. Endocrinol.25(8), 1289–1300 (2011).
  • Bouillon R, Verlinden L, Eelen G et al. Mechanisms for the selective action of Vitamin D analogs. J. Steroid Biochem. Mol. Biol.97(1–2), 21–30 (2005).
  • Costa JL, Eijk PP, van de Wiel MA et al. Anti-proliferative action of vitamin D in MCF7 is still active after siRNA-VDR knock-down. BMC Genomics10, 499 (2009).
  • Bouillon R, Verstuyf A, Mathieu C et al. Vitamin D resistance. Best Pract. Res. Clin. Endocrinol. Metab.20(4), 627–645 (2006).
  • Sauer B, Ruwisch L, Kleuser B. Antiapoptotic action of 1alpha,25-dihydroxyvitamin D3 in primary human melanocytes. Melanoma Res.13(4), 339–347 (2003).
  • Tuohimaa P. Vitamin D and aging. J. Steroid Biochem. Mol. Biol.114(1–2), 78–84 (2009).
  • Nemere I, Safford SE, Rohe B, DeSouza MM, Farach-Carson MC. Identification and characterization of 1,25D3-membrane-associated rapid response, steroid (1,25D3-MARRS) binding protein. J. Steroid Biochem. Mol. Biol.89–90, 281–285 (2004).
  • Turano C, Gaucci E, Grillo C, Chichiarelli S. ERp57/GRP58: a protein with multiple functions. Cell. Mol. Biol. Lett.16(4), 539–563 (2011).
  • Tunsophon S, Nemere I. Protein kinase C isotypes in signal transduction for the 1,25D3-MARRS receptor (ERp57/PDIA3) in steroid hormone-stimulated phosphate uptake. Steroids75(4–5), 307–313 (2010).
  • Wu W, Beilhartz G, Roy Y et al. Nuclear translocation of the 1,25D3-MARRS (membrane associated rapid response to steroids) receptor protein and NFkappaB in differentiating NB4 leukemia cells. Exp. Cell. Res.316(7), 1101–1108 (2010).
  • Speeckaert M, Huang G, Delanghe JR, Taes YE. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin. Chim. Acta372(1–2), 33–42 (2006).
  • Jones G. Vitamin D analogs. Endocrinol. Metab. Clin. North Am.39(2), 447–472, table of contents (2010).
  • Greco M, Mitri MD, Chiriacò F, Leo G, Brienza E, Maffia M. Serum proteomic profile of cutaneous malignant melanoma and relation to cancer progression: association to tumor derived alpha-N-acetylgalactosaminidase activity. Cancer Lett.283(2), 222–229 (2009).
  • Agadir A, Lazzaro G, Zheng Y, Zhang X-K, Mehta R. Resistance of HBL100 human breast epithelial cells to vitamin D action. Carcinogenesis20(4), 577–582 (1999).
  • Haussler MR, Jurutka PW, Mizwicki M, Norman AW. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2 vitamin D3: genomic and non-genomic mechanisms. Best Pract. Res. Clin. Endocrinol. Metab.25(4), 543–559 (2011).
  • Humeniuk-Polaczek R, Marcinkowska E. Impaired nuclear localization of vitamin D receptor in leukemia cells resistant to calcitriol-induced differentiation. J. Steroid Biochem. Mol. Biol.88(4–5), 361–366 (2004).
  • Slominski A. Neuroendocrine activity of the melanocyte. Exp. Dermatol.18(9), 760–763 (2009).
  • Essa S, Reichrath S, Mahlknecht U, Montenarh M, Vogt T, Reichrath J. Signature of VDR miRNAs and epigenetic modulation of vitamin D signaling in melanoma cell lines. Anticancer Res.32(1), 383–389 (2012).
  • Barroso E, Fernandez LP, Milne RL et al. Genetic analysis of the vitamin D receptor gene in two epithelial cancers: melanoma and breast cancer case–control studies. BMC Cancer8, 385 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.