408
Views
20
CrossRef citations to date
0
Altmetric
Review

Developments in single photon emission computed tomography and PET-based HER2 molecular imaging for breast cancer

, , , &
Pages 359-373 | Published online: 10 Jan 2014

References

  • Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 14(4), 320–368 (2009).
  • Schechter AL, Stern DF, Vaidyanathan L et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 312(5994), 513–516 (1984).
  • Akiyama T, Sudo C, Ogawara H, Toyoshima K, Yamamoto T. The product of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine kinase activity. Science 232(4758), 1644–1646 (1986).
  • King CR, Kraus MH, Aaronson SA. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229(4717), 974–976 (1985).
  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785), 177–182 (1987).
  • Owens MA, Horten BC, Da Silva MM. HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin. Breast Cancer 5(1), 63–69 (2004).
  • Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol. 7(7), 505–516 (2006).
  • Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26(45), 6469–6487 (2007).
  • Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res. 65(23), 11118–11128 (2005).
  • Shou J, Massarweh S, Osborne CK et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl Cancer Inst. 96(12), 926–935 (2004).
  • Molina MA, Sáez R, Ramsey EE et al. NH(2)-terminal truncated HER-2 protein but not full-length receptor is associated with nodal metastasis in human breast cancer. Clin. Cancer Res. 8(2), 347–353 (2002).
  • Scaltriti M, Rojo F, Ocaña A et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J. Natl Cancer Inst. 99(8), 628–638 (2007).
  • Rosenthal SI, Depowski PL, Sheehan CE, Ross JS. Comparison of HER-2/neu oncogene amplification detected by fluorescence in situ hybridization in lobular and ductal breast cancer. Appl. Immunohistochem. Mol. Morphol. 10(1), 40–46 (2002).
  • Fu W, Lobocki CA, Silberberg BK, Chelladurai M, Young SC. Molecular markers in Paget disease of the breast. J. Surg. Oncol. 77(3), 171–178 (2001).
  • Quénel N, Wafflart J, Bonichon F et al. The prognostic value of c-erbB2 in primary breast carcinomas: a study on 942 cases. Breast Cancer Res. Treat. 35(3), 283–291 (1995).
  • Niikura N, Liu J, Hayashi N et al. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J. Clin. Oncol. 30(6), 593–599 (2012).
  • Amir E, Clemons M, Purdie CA et al. Tissue confirmation of disease recurrence in breast cancer patients: pooled analysis of multi-centre, multi-disciplinary prospective studies. Cancer Treat. Rev. 38(6), 708–714 (2012).
  • Lin NU, Winer EP. Brain metastases: the HER2 paradigm. Clin. Cancer Res. 13(6), 1648–1655 (2007).
  • Ross JS. Breast cancer biomarkers and HER2 testing after 10 years of anti-HER2 therapy. Drug News Perspect. 22(2), 93–106 (2009).
  • Pegram MD, Pauletti G, Slamon DJ. HER-2/neu as a predictive marker of response to breast cancer therapy. Breast Cancer Res. Treat. 52(1–3), 65–77 (1998).
  • Moreno A, Lloveras B, Figueras A et al. Ductal carcinoma in situ of the breast: correlation between histologic classifications and biologic markers. Mod. Pathol. 10(11), 1088–1092 (1997).
  • Wolff AC, Hammond ME, Schwartz JN et al.; American Society of Clinical Oncology/College of American Pathologists. Guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
  • Press MF, Hung G, Godolphin W, Slamon DJ. Sensitivity of HER-2/neu antibodies in archival tissue samples: potential source of error in immunohistochemical studies of oncogene expression. Cancer Res. 54(10), 2771–2777 (1994).
  • Vani K, Sompuram SR, Fitzgibbons P, Bogen SA. National HER2 proficiency test results using standardized quantitative controls: characterization of laboratory failures. Arch. Pathol. Lab. Med. 132(2), 211–216 (2008).
  • Jacobs TW, Gown AM, Yaziji H, Barnes MJ, Schnitt SJ. Specificity of HercepTest in determining HER-2/neu status of breast cancers using the United States Food and Drug Administration-approved scoring system. J. Clin. Oncol. 17(7), 1983–1987 (1999).
  • Powell WC, Hicks DG, Prescott N et al. A new rabbit monoclonal antibody (4B5) for the immunohistochemical (IHC) determination of the HER2 status in breast cancer: comparison with CB11, fluorescence in situ hybridization (FISH), and interlaboratory reproducibility. Appl. Immunohistochem. Mol. Morphol. 15(1), 94–102 (2007).
  • Shah S, Chen B. Testing for HER2 in breast cancer: a continuing evolution. Patholog. Res. Int. 2011, 903202 (2011).
  • Wolff AC, Hammond ME, Schwartz JN et al.; American Society of Clinical Oncology; College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J. Clin. Oncol. 25(1), 118–145 (2007).
  • Shah SS, Wang Y, Tull J, Zhang S. Effect of high copy number of HER2 associated with polysomy 17 on HER2 protein expression in invasive breast carcinoma. Diagn. Mol. Pathol. 18(1), 30–33 (2009).
  • Yeh IT, Martin MA, Robetorye RS et al. Clinical validation of an array CGH test for HER2 status in breast cancer reveals that polysomy 17 is a rare event. Mod. Pathol. 22(9), 1169–1175 (2009).
  • Tse CH, Hwang HC, Goldstein LC et al. Determining true HER2 gene status in breast cancers with polysomy by using alternative chromosome 17 reference genes: implications for anti-HER2 targeted therapy. J. Clin. Oncol. 29(31), 4168–4174 (2011).
  • Lal P, Salazar PA, Hudis CA, Ladanyi M, Chen B. HER-2 testing in breast cancer using immunohistochemical analysis and fluorescence in situ hybridization: a single-institution experience of 2,279 cases and comparison of dual-color and single-color scoring. Am. J. Clin. Pathol. 121(5), 631–636 (2004).
  • Yaziji H, Goldstein LC, Barry TS et al. HER-2 testing in breast cancer using parallel tissue-based methods. JAMA 291(16), 1972–1977 (2004).
  • Slamon DJ, Leyland-Jones B, Shak S et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344(11), 783–792 (2001).
  • Marty M, Cognetti F, Maraninchi D et al. Randomized Phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J. Clin. Oncol. 23(19), 4265–4274 (2005).
  • Slamon D, Eiermann W, Robert N et al.; Breast Cancer International Research Group. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 365(14), 1273–1283 (2011).
  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al.; Herceptin Adjuvant (HERA) Trial Study Team. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353(16), 1659–1672 (2005).
  • Romond EH, Perez EA, Bryant J et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353(16), 1673–1684 (2005).
  • Joensuu H, Kellokumpu-Lehtinen PL, Bono P et al.; FinHer Study Investigators. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N. Engl. J. Med. 354(8), 809–820 (2006).
  • Cameron D, Casey M, Press M et al. A Phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res. Treat. 112(3), 533–543 (2008).
  • Baselga J, Cortés J, Kim SB et al.; CLEOPATRA Study Group. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 366(2), 109–119 (2012).
  • Mankoff DA. A definition of molecular imaging. J. Nuclear Med. 48(6), 18N–21N (2007).
  • Port ER, Yeung H, Gonen M et al. 18F-2-fluoro-2-deoxy-d-glucose positron emission tomography scanning affects surgical management in selected patients with high-risk, operable breast carcinoma. Ann. Surg. Oncol. 13(5), 677–684 (2006).
  • Osborne JR, Port E, Gonen M et al. 18F-FDG PET of locally invasive breast cancer and association of estrogen receptor status with standardized uptake value: microarray and immunohistochemical analysis. J. Nucl. Med. 51(4), 543–550 (2010).
  • Lub-de Hooge MN, Kosterink JG, Perik PJ et al. Preclinical characterisation of 111In-DTPA-trastuzumab. Br. J. Pharmacol. 143(1), 99–106 (2004).
  • McLarty K, Cornelissen B, Scollard DA, Done SJ, Chun K, Reilly RM. Associations between the uptake of 111In-DTPA-trastuzumab, HER2 density and response to trastuzumab (Herceptin) in athymic mice bearing subcutaneous human tumour xenografts. Eur. J. Nucl. Med. Mol. Imaging 36(1), 81–93 (2009).
  • Perik PJ, Lub-De Hooge MN, Gietema JA et al. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J. Clin. Oncol. 24(15), 2276–2282 (2006).
  • McLarty K, Cornelissen B, Cai Z et al. Micro-SPECT/CT with 111In-DTPA-pertuzumab sensitively detects trastuzumab-mediated HER2 downregulation and tumor response in athymic mice bearing MDA-MB-361 human breast cancer xenografts. J. Nucl. Med. 50(8), 1340–1348 (2009).
  • Dijkers EC, Kosterink JG, Rademaker AP et al. Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J. Nucl. Med. 50(6), 974–981 (2009).
  • Oude Munnink TH, Korte MA, Nagengast WB et al. (89)Zr-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft. Eur. J. Cancer 46(3), 678–684 (2010).
  • Dijkers EC, Oude Munnink TH, Kosterink JG et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharmacol. Ther. 87(5), 586–592 (2010).
  • Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat. Biotechnol. 22(6), 701–706 (2004).
  • Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM. Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J. Nucl. Med. 47(5), 793–796 (2006).
  • Akhurst T, Morris PG, Modi S et al. Positron emission tomography (PET) with radiolabeled F(ab´)2-trastuzumab fragments in patients (pts) with HER2-positive metastatic breast cancer (MBC): initial feasibility results. Presented at: 2008 Breast Cancer Symposium. Washington, DC, USA, 5–7 September 2008.
  • Dennis MS, Jin H, Dugger D et al. Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res. 67(1), 254–261 (2007).
  • Nilsson B, Moks T, Jansson B et al. A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng. 1(2), 107–113 (1987).
  • Orlova A, Magnusson M, Eriksson TL et al. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res. 66(8), 4339–4348 (2006).
  • Nord K, Gunneriusson E, Ringdahl J, Ståhl S, Uhlén M, Nygren PA. Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat. Biotechnol. 15(8), 772–777 (1997).
  • Orlova A, Tolmachev V, Pehrson R et al. Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res. 67(5), 2178–2186 (2007).
  • Orlova A, Wållberg H, Stone-Elander S, Tolmachev V. On the selection of a tracer for PET imaging of HER2-expressing tumors: direct comparison of a 124I-labeled affibody molecule and trastuzumab in a murine xenograft model. J. Nucl. Med. 50(3), 417–425 (2009).
  • Tolmachev V, Velikyan I, Sandström M, Orlova A. A HER2-binding affibody molecule labelled with 68Ga for PET imaging: direct in vivo comparison with the 111In-labelled analogue. Eur. J. Nucl. Med. Mol. Imaging 37(7), 1356–1367 (2010).
  • Cheng Z, De Jesus OP, Kramer DJ et al. 64Cu-labeled affibody molecules for imaging of HER2 expressing tumors. Mol. Imaging Biol. 12(3), 316–324 (2010).
  • Ren G, Zhang R, Liu Z et al. A 2-helix small protein labeled with 68Ga for PET imaging of HER2 expression. J. Nucl. Med. 50(9), 1492–1499 (2009).
  • Ren G, Webster JM, Liu Z et al. In vivo targeting of HER2-positive tumor using 2-helix affibody molecules. Amino Acids 43(1), 405–413 (2012).
  • Kiesewetter DO, Krämer-Marek G, Ma Y, Capala J. Radiolabeling of HER2 specific Affibody® molecule with F-18. J. Fluor. Chem. 129(9), 799–805 (2008).
  • Kramer-Marek G, Kiesewetter DO, Martiniova L, Jagoda E, Lee SB, Capala J. [18F]FBEM-ZHER2:342 – affibody molecule – a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 35(5), 1008–1018 (2008).
  • Kramer-Marek G, Kiesewetter DO, Capala J. Changes in HER2 expression in breast cancer xenografts after therapy can be quantified using PET and (18)F-labeled affibody molecules. J. Nucl. Med. 50(7), 1131–1139 (2009).
  • Ahlgren S, Wållberg H, Tran TA et al. Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine. J. Nucl. Med. 50(5), 781–789 (2009).
  • Baum RP, Prasad V, Müller D et al. Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J. Nucl. Med. 51(6), 892–897 (2010).
  • Tran T, Engfeldt T, Orlova A et al. (99m)Tc-maEEE-Z HER2:342, an affibody molecule-based tracer for the detection of HER2 expression in malignant tumors. Bioconjug. Chem. 18(6), 1956–1964 (2007).
  • Hofstrom C, Orlova A, Altai M, Wangsell F, Graslund T, Tolmachev V. Use of a HEHEHE purification tag instead of a hexahistidine tag improves biodistribution of affibody molecules site-specifically labeled with (99m)Tc, (111)In, and (125)I. J. Med. Chem. 54(11), 3817–3826 (2011).
  • Robinson MK, Shaller C, Garmestani K et al. Effective treatment of established human breast tumor xenografts in immunodeficient mice with a single dose of the alpha-emitting radioisotope astatine-211 conjugated to anti-HER2/neu diabodies. Clin. Cancer Res. 14(3), 875–882 (2008).
  • Miller J, Doss M, McQuillen R et al. Impact of expression system on the function of the C6.5 diabody PET radiotracer. Tumour Biol. 33(3), 617–627 (2012).
  • Robinson MK, Doss M, Shaller C et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res. 65(4), 1471–1478 (2005).
  • Reddy S, Shaller CC, Doss M et al. Evaluation of the anti-HER2 C6.5 diabody as a PET radiotracer to monitor HER2 status and predict response to trastuzumab treatment. Clin. Cancer Res. 17(6), 1509–1520 (2011).
  • Bork P. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins 17(4), 363–374 (1993).
  • Lander ES, Linton LM, Birren B et al.; International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921 (2001).
  • Sedgwick SG, Smerdon SJ. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem. Sci. 24(8), 311–316 (1999).
  • Kobe B, Kajava AV. When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends Biochem. Sci. 25(10), 509–515 (2000).
  • Malek S, Huxford T, Ghosh G. Iκ Bα functions through direct contacts with the nuclear localization signals and the DNA binding sequences of NF-κB. J. Biol. Chem. 273(39), 25427–25435 (1998).
  • Kohl A, Binz HK, Forrer P, Stumpp MT, Plückthun A, Grütter MG. Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc. Natl Acad. Sci. USA 100(4), 1700–1705 (2003).
  • Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332(2), 489–503 (2003).
  • Michaely P, Tomchick DR, Machius M, Anderson RG. Crystal structure of a 12 ANK repeat stack from human ankyrinR. EMBO J. 21(23), 6387–6396 (2002).
  • Mosavi LK, Williams S, Peng Zy ZY. Equilibrium folding and stability of myotrophin: a model ankyrin repeat protein. J. Mol. Biol. 320(2), 165–170 (2002).
  • Zahnd C, Pecorari F, Straumann N, Wyler E, Plückthun A. Selection and characterization of Her2 binding-designed ankyrin repeat proteins. J. Biol. Chem. 281(46), 35167–35175 (2006).
  • Zahnd C, Kawe M, Stumpp MT et al. Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size. Cancer Res. 70(4), 1595–1605 (2010).
  • Zahnd C, Wyler E, Schwenk JM et al. A designed ankyrin repeat protein evolved to picomolar affinity to Her2. J. Mol. Biol. 369(4), 1015–1028 (2007).
  • Vaneycken I, Devoogdt N, Van Gassen N et al. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J. 25(7), 2433–2446 (2011).
  • D’Huyvetter M, Aerts A, Xavier C et al. Development of 177Lu-nanobodies for radioimmunotherapy of HER2-positive breast cancer: evaluation of different bifunctional chelators. Contrast Media Mol. Imaging 7(2), 254–264 (2012).
  • Holz JB. The TITAN trial – assessing the efficacy and safety of an anti-von Willebrand factor nanobody in patients with acquired thrombotic thrombocytopenic purpura. Transfus. Apher. Sci. 46(3), 343–346 (2012).
  • Huang B, Law MW, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251(1), 166–174 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.