60
Views
4
CrossRef citations to date
0
Altmetric
Review

Modification of cardiovascular ion channels by gene therapy

&
Pages 939-953 | Published online: 10 Jan 2014

References

  • Marsh JD, Antman EM. T-type calcium channel blockade in the management of chronic ischemic heart disease. Cardiovasc. Drugs Ther.14(5), 459–461 (2000).
  • Kaye DM, Hoshijima M, Chien KR. Reversing advanced heart failure by targeting Ca2+ cycling. Annu. Rev. Med.59(1), 13–28 (2008).
  • Dishart KL, Work LM, Denby L, Baker AH. Gene therapy for cardiovascular disease. J. Biomed. Biotechnol.2003(2), 138–148 (2003).
  • Vassalli G, Bueler H, Dudler J, von Segesser LK, Kappenberger L. Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int. J. Cardiol.90(2–3), 229–238 (2003).
  • Fleury S, Driscoll R, Simeoni E et al. Helper-dependent adenovirus vectors devoid of all viral genes cause less myocardial inflammation compared with first-generation adenovirus vectors. Bas. Cardiovasc. Res.99, 247–256 (2004).
  • Palmer DJ, Ng P. Helper-dependent adenoviral vectors for gene therapy. Hum. Gene Ther.16, 1–16 (2005).
  • Pacak C, Sakai Y, Thattaliyath B, Mah C, Byrne B. Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice. Genet. Vaccine Ther.6(1), 13 (2008).
  • Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther.14(3), 316–327 (2006).
  • Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl Acad. Sci. USA99(18), 11854–11859 (2002).
  • Palomeque J, Chemaly ER, Colosi P et al. Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo. Gene Ther.14, 989–997 (2007).
  • Lyon AR, Sato M, Hajjar RJ, Samulski RJ, Harding SE. Gene therapy: targeting the myocardium. Heart94, 89–99 (2008).
  • Yang L, Jiang J, Drouin LM et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc. Natl Acad. Sci. USA106(10), 3946–3951 (2009).
  • Wang Z, Zhu T, Qiao C et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat. Biotechnol.23(3), 321–328 (2005).
  • Themis M, Waddington SN, Schmidt M et al. Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol. Ther.12(4), 763–771 (2005).
  • Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum. Gene Ther.17(3), 253–263 (2006).
  • Roger VL, Weston SA, Redfield MM et al. Trends in heart failure incidence and survival in a community-based population. JAMA292(3), 344–350 (2004).
  • Lloyd-Jones D, Adams R, Carnethon M et al. Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation119(3), 480–486 (2009).
  • Bers DM. Cardiac excitation-contraction coupling. Nature415, 198–295 (2002).
  • Lai NC, Roth DM, Gao MH et al. Intracoronary delivery of adenovirus encoding adenylyl cyclase VI increases left ventricular function and cAMP-generating capacity. Circulation102, 2396–2401 (2000).
  • Rebolledo B, Lai NC, Gao MH et al. Adenylylcyclase gene transfer increases function of the failing heart. Hum. Gene Ther.17(10), 1043–1048 (2006).
  • Kawase Y, Ly HQ, Prunier F et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J. Am. Coll. Cardiol.51(11), 1112–1119 (2008).
  • Hajjar RJ, Zsebo K, Deckelbaum L et al. Design of a Phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J. Card. Fail.14(5), 355–367 (2008).
  • Jaski BE, Jessup ML, Mancini DM et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human Phase 1/2 clinical trial. J. Card. Fail.15(3), 171–181 (2009).
  • Champion HC, Georgakopoulos D, Haldar S, Wang L, Wang Y, Kass DA. Robust adenoviral and adeno-associated viral gene transfer to the in vivo murine heart. Circulation108, 2790–2797 (2003).
  • Kaye DM, Preovolos A, Marshall T et al. Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J. Am. Coll. Cardiol.50(3), 253–260 (2007).
  • Suckau L, Fechner H, Chemaly E et al. Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation119(9), 1241–1252 (2009).
  • Chen X, Zhang X, Kubo H et al. Ca2+ Influx-induced sarcoplasmic reticulum Ca2+ overload causes mitochondrial-dependent apoptosis in ventricular myocytes. Circ. Res.97, 1009–1017 (2005).
  • Chen X, Piacentino V III, Furukawa S, Goldman B, Margulies KB, Houser SR. L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist device. Circ. Res.91, 517–524 (2002).
  • Takahashi T, Allen PD, Lacro RV et al. Expression of dihydropyridine receptor (Ca2+ channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure. J. Clin. Invest.90, 927–935 (1992).
  • Marsh JD, Telemaque S, Rhee SW, Stimers JR, Rusch NJ. Delivery of ion channel genes to treat cardiovascular diseases. Trans. Am. Clin. Climatol. Assoc.119, 171–183 (2008).
  • Chen Y-H, Li M-H, Zhang Y et al. Structural basis of the subunit interaction of voltage-gated Ca2+ channels. Nature429, 675–680 (2004).
  • Ball SL, Powers PA, Shin H-S, Morgans CW, Peachey NS, Gregg RG. Role of the β2 subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Investig. Ophthalmol. Vis. Sci.43(5), 1595–1603 (2005).
  • Telemaque S, Sonkusare S, Grain T et al. Design of mutant b2 subunits as decoy molecules to reduce the expression of functional Ca2+ channels in cardiac cells. J. Pharmacol. Exp. Ther.325(1), 37–46 (2008).
  • Cingolani E, Ramirez Correa GA, Kizana E, Murata M, Cho HC, Marban E. Gene therapy to inhibit the calcium channel b subunit: physiological consequences and pathophysiological effects in models of cardiac hypertrophy. Circ. Res.101(2), 166–175 (2007).
  • Kim D, Marsh JD, Smith TW. Effects of thyroid hormone on slow Ca channel function in cultured chick ventricular cells. J. Clin. Invest.80, 88–94 (1987).
  • Belke DD, Gloss B, Swanson EA, Dillmann WH. Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-α1 and -β1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology148(6), 2870–2877 (2007).
  • Sato T, Ohkusa T, Honjo H et al. Altered expression of connexin43 contributes to the arrhythmogenic substrate during the development of heart failure in cardiomyopathic hamster. Am. J. Physiol. Heart Circ. Physiol.294(3), H1164–H1173 (2008).
  • Kizana E, Chang CY, Cingolani E et al. Gene transfer of connexin43 mutants attenuates coupling in cardiomyocytes: novel basis for modulation of cardiac conduction by gene therapy. Circ. Res.100(11), 1597–1604 (2007).
  • Roy D, Talajic M, Nattel S et al. Rhythm control versus rate control for atrial fibrillation and heart failure. N. Engl. J. Med.358(25), 2667–2677 (2008).
  • Bauer A, McDonald AD, Nasir K et al. Inhibitory G protein overexpression provides physiologically relevant heart rate control in persistent atrial fibrillation. Circulation110(19), 3115–3120 (2004).
  • Kovesdi I, Brough DE, Bruder JT, Wickham TJ. Adenoviral vectors for gene transfer. Curr. Opin. Biotechnol.8(5), 583–589 (1997).
  • Murata M, Cingolani E, McDonald AD, Donahue JK, Marban E. Creation of a genetic calcium channel blocker by targeted Gem gene transfer in the heart. Circ. Res.95, 398–405 (2004).
  • Qu J, Plotnikov AN, Danilo P Jr et al. Expression and function of a biological pacemaker in canine heart. Circulation107(8), 1106–1109 (2003).
  • Robinson RB, Brink PR, Cohen IS, Rosen MR. If and the biological pacemaker. Pharmacol. Res.53(5), 407–415 (2006).
  • Barbuti A, Gravante B, Riolfo M, Milanesi R, Terragni B, DiFrancesco D. Localization of pacemaker channels in lipid rafts regulates channel kinetics. Circ. Res.94(10), 1325–1331 (2004).
  • Potapova I, Plotnikov A, Lu Z et al. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ. Res.94(7), 952–959 (2004).
  • Tse HF, Xue T, Lau CP et al. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation114, 1000–1011 (2006).
  • Marban E, Cho H. Creation of a biological pacemaker by gene- or cell-based approaches. Med. Biol. Eng. Comput.45(2), 133–144 (2007).
  • Xue T, Cho HC, Akar FG et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation111(1), 11–20 (2005).
  • Kehat I, Khimovich L, Caspi O et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol.22, 1282–1289 (2004).
  • Smith RR, Barile L, Cho HC et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation115(7), 896–908 (2007).
  • Sasano T, McDonald AD, Kikuchi K, Donahue JK. Molecular ablation of ventricular tachycardia after myocardial infarction. Nat. Med.12(11), 1256–1258 (2006).
  • Yankelson L, Feld Y, Bressler-Stramer T et al. Cell therapy for modification of the myocardial electrophysiological substrate. Circulation117(6), 720–731 (2008).
  • Miake J, Marbán E, Nuss HB. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J. Clin. Invest.111(10), 1529–1536 (2003).
  • Lau DH, Clausen C, Sosunov EA et al. Epicardial border zone overexpression of skeletal muscle sodium channel SkM1 normalizes activation, preserves conduction, and suppresses ventricular arrhythmia: an in silico, in vivo, in vitro study. Circulation119(1), 19–27 (2009).
  • Zhang J, Berra-Romani R, Sinnegger-Brauns MJ, Striessnig J, Blaustein MP, Matteson DR. Role of Cav1.2 L-type Ca2+ channels in vascular tone: effects of nifedipine and Mg2+. Am. J. Physiol. Heart Circ. Physiol.292(1), H415–H425 (2007).
  • Sinnegger-Brauns MJ, Hetzenauer A, Huber IG et al. Isoform-specific regulation of mood behavior and pancreatic β cell and cardiovascular function by L-type Ca 2+ channels. J. Gene Med.113, 1430–1439 (2004).
  • Sonkusare S, Stimers JR, Grain T, Marsh JD, Telemaque S. Expression of a β2 subunit mutant alters Ca currents in HL-1 cells. FASEB J.20(5 Part II), A1114 (2006).
  • Rhee SW, Stimers JR, Wang W, Pang L. Vascular smooth muscle-specific knockdown of non-cardiac form of L-type calcium channel by shRNA – a potential anti-hypertensive therapy. J. Pharmacol. Exp. Ther.329(2), 775–782 (2009).
  • Shintani S, Kusano K, Ii M et al. Synergistic effect of combined intramyocardial CD34+ cells and VEGF2 gene therapy after MI. Nat. Clin. Pract. Cardiovasc. Med.3(Suppl. 1), S123–S128 (2006).
  • Stewart DJ, Kutryk MJ, Fitchett D et al.VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN Trial. Mol. Ther.17(6), 1109–1115 (2009).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004).
  • van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends Genet.24(4), 159–166 (2008).
  • Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RHA, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell120, 21–24 (2005).
  • Yang B, Lu Y, Wang Z. Control of cardiac excitability by microRNAs. Cardiovasc. Res.79(4), 571–580 (2008).
  • Yang B, Lin H, Xiao J et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med.13(4), 486–491 (2007).
  • van Rooij E, Sutherland LB, Liu N et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA103(48), 18255–18260 (2006).
  • Ikeda S, Kong SW, Lu J et al. Altered microRNA expression in human heart disease. Physiol. Genomics31(3), 367–373 (2007).
  • Thum T, Galuppo P, Wolf C et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation116, 258–267 (2007).
  • van Rooij E, Marshall WS, Olson EN. Antisense toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ. Res.103, 919–928 (2008).
  • Latronico MVG, Catalucci D, Condorelli G. Emerging role of microRNAs in cardiovascular biology. Circ. Res.101(12), 1225–1236 (2007).
  • Lu Y, Xiao J, Lin H et al. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucl. Acids Res.37(3), E24 (2009).
  • Machemer T, Engler H, Tsai V et al. Characterization of hemodynamic events following intravascular infusion of recombinant adenovirus reveals possible solutions for mitigating cardiovascular responses. Mol. Ther.12(2), 254–263 (2005).
  • Wilson JM. Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol. Genet. Metabol.96, 151–157 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.