101
Views
28
CrossRef citations to date
0
Altmetric
Review

Stem cell labeling for noninvasive delivery and tracking in cardiovascular regenerative therapy

&
Pages 1149-1160 | Published online: 10 Jan 2014

References

  • Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature451(7181), 937–942 (2008).
  • Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science284(5411), 143–147 (1999).
  • Orlic D, Hill JM, Arai AE. Stem cells for myocardial regeneration. Circ. Res.91(12), 1092–1102 (2002).
  • Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med.9(6), 702–712 (2003).
  • Abdel-Latif A, Bolli R, Tleyjeh IM et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch. Intern. Med.167(10), 989–997 (2007).
  • Fan L, Chen L, Chen X, Fu F. A meta-analysis of stem cell mobilization by granulocyte colony-stimulating factor in the treatment of acute myocardial infarction. Cardiovasc. Drugs Ther.22(1), 45–54 (2008).
  • Zhang SN, Sun AJ, Ge JB et al. Intracoronary autologous bone marrow stem cells transfer for patients with acute myocardial infarction: a meta-analysis of randomised controlled trials. Int. J. Cardiol. (2008).
  • Singh S, Arora R, Handa K et al. Stem cells improve left ventricular function in acute myocardial infarction. Clin. Cardiol.32(4), 176–180 (2009).
  • Lipinski MJ, Biondi-Zoccai GG, Abbate A et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J. Am. Coll. Cardiol.50(18), 1761–1767 (2007).
  • Martin-Rendon E, Brunskill S, Hyde C et al. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur. Heart J.29, 1807–1818 (2008).
  • Schachinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1210–1221 (2006).
  • Wollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364(9429), 141–148. (2004).
  • Meyer GP, Wollert KC, Lotz J et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (Bone Marrow Transfer to Enhance ST-Elevation Infarct Regeneration) trial. Circulation113(10), 1287–1294 (2006).
  • Schaefer A, Meyer GP, Fuchs M et al. Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial. Eur. Heart J.27(8), 929–935 (2006).
  • Tendera M, Wojakowski W, Ruzyllo W et al. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of the randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Populations of Stem Cells in Acute Myocardial Infarction (REGENT) trial. Eur. Heart J.30, 1313–1321 (2009).
  • Sanchez PL, San Roman JA, Villa A, Fernandez ME, Fernandez-Aviles F. Contemplating the bright future of stem cell therapy for cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med.3(Suppl. 1), S138–S151 (2006).
  • Tang YL, Zhao Q, Zhang YC et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul. Pept.117(1), 3–10 (2004).
  • Dawn B, Bolli R. Adult bone marrow-derived cells: regenerative potential, plasticity, and tissue commitment. Basic Res. Cardiol.100(6), 494–503 (2005).
  • Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature410(6829), 701–705 (2001).
  • Zhang M, Methot D, Poppa V et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol.33(5), 907–921 (2001).
  • Frank JA, Zywicke H, Jordan EK et al. Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad. Radiol.9, S484-S487 (2002).
  • Zhou R, Acton PD, Ferrari VA. Imaging stem cells implanted in infarcted myocardium. J. Am. Coll. Cardiol.48(10), 2094–2106 (2006).
  • Sutton EJ, Henning TD, Pichler BJ, Bremer C, Daldrup-Link HE. Cell tracking with optical imaging. Eur. Radiol.18(10), 2021–2032 (2008).
  • Lin S, Xie X, Patel MR et al. Quantum dot imaging for embryonic stem cells. BMC Biotechnol.7, 67 (2007).
  • Slotkin JR, Chakrabarti L, Dai HN et al. In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev. Dyn.236(12), 3393–3401 (2007).
  • Muller-Borer BJ, Collins MC, Gunst PR, Cascio WE, Kypson AP. Quantum dot labeling of mesenchymal stem cells. J. Nanobiotechnology5, 9 (2007).
  • Rota M, Kajstura J, Hosoda T et al. Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc. Natl Acad. Sci. USA104(45), 17783–17788 (2007).
  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater.4(6), 435–446 (2005).
  • Rosen AB, Kelly DJ, Schuldt AJ et al. Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells25(8), 2128–2138 (2007).
  • Shah BS, Clark PA, Moioli EK, Stroscio MA, Mao JJ. Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett.7(10), 3071–3079 (2007).
  • Hoshino K, Ly HQ, Frangioni JV, Hajjar RJ. in vivo tracking in cardiac stem cell-based therapy. Prog. Cardiovasc. Dis.49(6), 414–420 (2007).
  • Kraitchman DL, Bulte JW. Imaging of stem cells using MRI. Basic Res. Cardiol.103(2), 105–113 (2008).
  • Bulte JW, Kraitchman DL. Monitoring cell therapy using iron oxide MR contrast agents. Curr. Pharm. Biotechnol.5(6), 567–584 (2004).
  • Arbab AS, Yocum GT, Kalish H et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood104(4), 1217–1223 (2004).
  • Walczak P, Kedziorek D, Gilad AA, Lin S, Bulte JW. Instant MR labeling of stem cells using magnetoelectroporation. Magn. Reson. Med. (54), 769–774 (2005).
  • Arbab AS, Bashaw LA, Miller BR et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation76(7), 1123–1130. (2003).
  • Zhu J, Zhou L, XingWu F. Tracking neural stem cells in patients with brain trauma. N. Engl. J. Med.355(22), 2376–2378 (2006).
  • Kraitchman DL, Heldman AW, Atalar E et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation107(18), 2290–2293 (2003).
  • Dick AJ, Guttman MA, Raman VK et al. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation108(23), 2899–2904 (2003).
  • Kraitchman DL, Gilson WD, Lorenz CH. Stem cell therapy: MRI guidance and monitoring. J. Magn. Reson. Imaging27(2), 299–310 (2008).
  • de Silva R, Gutierrez LF, Raval AN et al. X-ray fused with magnetic resonance imaging (XFM) to target endomyocardial injections. validation in a swine model of myocardial infarction. Circulation114(22), 2342–2350 (2006).
  • Arbab AS, Yocum GT, Rad AM et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed.18(8), 553–559 (2005).
  • Arbab AS, Bashaw LA, Miller BR et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology229(3), 838–846 (2003).
  • Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JW. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed.17(7), 513–517 (2004).
  • Chen YC, Hsiao JK, Liu HM et al. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol. Appl. Pharmacol.245(2), 272–279 (2010).
  • Pawelczyk E, Arbab AS, Chaudhry A et al. In vitro model of bromodeoxyuridine or iron oxide nanoparticle uptake by activated macrophages from labeled stem cells: implications for cellular therapy. Stem Cells26(5), 1366–1375 (2008).
  • Siglienti I, Bendszus M, Kleinschnitz C, Stoll G. Cytokine profile of iron-laden macrophages: implications for cellular magnetic resonance imaging. J. Neuroimmunol.173(1–2), 166–173 (2006).
  • Walczak P, Kedziorek DA, Gilad AA, Lin S, Bulte JW. Instant MR labeling of stem cells using magnetoelectroporation. Magn. Reson. Med54(4), 769–774 (2005).
  • Kedziorek DA, Gilson WD, Stuber M et al. Mesenchymal stem cell therapy in a rabbit hindlimb ischemia model. J. Am. Coll. Cardiol.49(9), 362A (2007).
  • Stuber M, Gilson WD, Schär M et al. Positive contrast visualization of iron oxide-labeled stem cells using inversion recovery with ON-resonant water suppression (IRON). Magn. Reson. Med.58, 1072–1077 (2007).
  • Foster-Gareau P, Heyn C, Alejski A, Rutt BK. Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn. Reson. Med.49(5), 968–971 (2003).
  • Heyn C, Bowen CV, Rutt BK, Foster PJ. Detection threshold of single SPIO-labeled cells with FIESTA. Magn. Reson. Med.53(2), 312–320 (2005).
  • Mangi AA, Noiseux N, Kong D et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med.9(9), 1195–1201 (2003).
  • Ebert SN, Taylor DG, Nguyen HL et al. Noninvasive tracking of cardiac embryonic stem cells in vivo using magnetic resonance imaging techniques. Stem Cells25(11), 2936–2944 (2007).
  • Amsalem Y, Mardor Y, Feinberg MS et al. Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation116(Suppl. 11), I38–45 (2007).
  • Terrovitis J, Stuber M, Youssef A et al. Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation117(12), 1555–1562 (2008).
  • Stuckey DJ, Carr CA, Martin-Rendon E et al. Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells24(8), 1968–1975 (2006).
  • Partlow KC, Chen J, Brant JA et al.19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J.21(8), 1647–1654 (2007).
  • Ruiz-Cabello J, Walczak P, Kedziorek DA et al. In vivo ‘hot spot’ MR imaging of neural stem cells using fluorinated nanoparticles. Magn. Reson. Med.60(6), 1506–1511 (2008).
  • Srinivas M, Morel PA, Ernst LA, Laidlaw DH, Ahrens ET. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn. Reson. Med.58(4), 725–734 (2007).
  • Barbash IM, Chouraqui P, Baron J et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation108(7), 863–868 (2003).
  • Kraitchman DL, Tatsumi M, Gilson WD et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation112(10), 1451–1461 (2005).
  • Simonova M, Shtanko O, Sergeyev N, Weissleder R, Bogdanov A Jr. Engineering of technetium-99m-binding artificial receptors for imaging gene expression. J. Gene Med.5(12), 1056–1066 (2003).
  • Thakur ML, Segal AW, Louis L et al. Indium-111-labeled cellular blood components: mechanism of labeling and intracellular location in human neutrophils. J. Nucl. Med.18(10), 1022–1026. (1977).
  • Thakur ML, Segal AW, Louis L et al. Indium-111-labeled cellular blood components: mechanism of labeling and intracellular location in human neutrophils. J. Nucl. Med.18(10), 1022–1026 (1977).
  • Jin Y, Kong H, Stodilka RZ et al. Determining the minimum number of detectable cardiac-transplanted 111In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT. Phys. Med. Biol.50(19), 4445–4455 (2005).
  • Chin BB, Nakamoto Y, Bulte JW et al.111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl. Med. Commun.24(11), 1149–1154. (2003).
  • Brenner W, Aicher A, Eckey T et al.111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J. Nucl. Med.45(3), 512–518. (2004).
  • Aicher A, Brenner W, Zuhayra M et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation107(16), 2134–2139 (2003).
  • Hou D, Youssef EA, Brinton TJ et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation112(Suppl. 9), I150–I156 (2005).
  • Doyle B, Kemp BJ, Chareonthaitawee P et al. Dynamic tracking during intracoronary injection of 18F-FDG-labeled progenitor cell therapy for acute myocardial infarction. J. Nucl. Med.48(10), 1708–1714 (2007).
  • Freyman T, Polin G, Osman H et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur. Heart J.27(9), 1114–1122 (2006).
  • Hofmann M, Wollert KC, Meyer GP et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation111(17), 2198–2202 (2005).
  • Kang WJ, Kang HJ, Kim HS et al. Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J. Nucl. Med.47(8), 1295–1301 (2006).
  • Gholamrezanezhad A, Mirpour S, Ardekani JM et al. Cytotoxicity of 111In-oxine on mesenchymal stem cells: a time-dependent adverse effect. Nucl. Med. Commun.30(3), 210–216 (2009).
  • Adonai N, Nguyen KN, Walsh J et al. Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc. Natl Acad. Sci. USA99(5), 3030–3035 (2002).
  • Pawelczyk E, Jordan EK, Balakumaran A et al. In vivo transfer of intracellular labels from locally implanted bone marrow stromal cells to resident tissue macrophages. PLoS One4(8), e6712 (2009).
  • Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science210(4472), 908–910 (1980).
  • Willmann JK, Paulmurugan R, Rodriguez-Porcel M et al. Imaging gene expression in human mesenchymal stem cells: from small to large animals. Radiology252(1), 117–127 (2009).
  • Barnett BP, Arepally A, Karmarkar PV et al. Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat. Med.13(8), 986–991 (2007).
  • Barnett BP, Kraitchman DL, Lauzon C et al. Radiopaque alginate microcapsules for x-ray visualization and immunoprotection of cellular therapeutics. Mol. Pharm.3(5), 531–538 (2006).
  • Fu YL, Kedziorek D, Crisostomo V et al. Perfluorocarbon microcapsules for x-ray visualization of mesenchymal stem cell delivery and engraftment. Circulation118, S519 (2008).
  • Cosby KM, Hofmann LV, Barnett BP et al. A novel radio-opaque barium/alginate microencapsulation technique for allogeneic mesenchymal stem cell delivery and localization. J. Cardiovasc. Magn. Reson.9(2) (2007).
  • Kraitchman DL, Arepally A, Barnett BP et al. An x-ray visible microencapsulation method to enhance delivery and engraftment of allogeneic stem cells for cardiovascular applications. Contrast Media Mol. Imaging2(6), 294 (2007).
  • Fu Y, Kedziorek D, Ouwerkerk R et al. Multifunctional perfluorooctylbromide alginate microcapsules for monitoring of mesenchymal stem cell delivery using CT and MRI. J. Cardiovasc. Magn. Reson.11(Suppl. 1), O7 (2009).
  • Nahrendorf M, Sosnovik D, French B et al. Multimodality cardiovascular molecular imaging – part II. Circ. Cardiovasc. Imaging2, 56–70 (2009).
  • Khattak SF, Chin KS, Bhatia SR, Roberts SC. Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol. Bioeng.96(1), 156–166 (2007).
  • Leor J, Gerecht S, Cohen S et al. Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart93(10), 1278–1284 (2007).
  • Crisostomo PR, Wang M, Markel TA et al. Stem cell mechanisms and paracrine effects: potential in cardiac surgery. Shock28(4), 375–383 (2007).
  • Du YY, Zhou SH, Zhou T et al. Immuno-inflammatory regulation effect of mesenchymal stem cell transplantation in a rat model of myocardial infarction. Cytotherapy10(5), 469–478 (2008).
  • Doyle B, Sorajja P, Hynes B et al. Progenitor cell therapy in a porcine acute myocardial infarction model induces cardiac hypertrophy, mediated by paracrine secretion of cardiotrophic factors including TGFβ1. Stem Cells Dev.17(5), 941–951 (2008).
  • Zhang SJ, Wu JC. Comparison of imaging techniques for tracking cardiac stem cell therapy. J. Nucl. Med.48(12), 1916–1919 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.