7,626
Views
46
CrossRef citations to date
0
Altmetric
Review

Phentermine, topiramate and their combination for the treatment of adiposopathy (‘sick fat’) and metabolic disease

Pages 1777-1801 | Published online: 10 Jan 2014

References

  • Bays H, Abate N, Chandalia M. Adiposopathy: sick fat causes high blood sugar, high blood pressure, and dyslipidemia. Future Cardiol.1(1), 39–59 (2005).
  • Bays HE. ‘Sick fat,’ metabolic disease, and atherosclerosis. Am. J. Med.122(1 Suppl.), S26–S37 (2009).
  • Bays HE, Rodbard RW, Schorr AB, González-Campoy JM. Adiposopathy: treating pathogenic adipose tissue to reduce cardiovascular disease risk. Curr. Treat. Options Cardiovasc. Med.9(4), 259–271 (2007).
  • Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol.53(21), 1925–1932 (2009).
  • Bays H, Ballantyne C. Adiposopathy: why do adiposity and obesity cause metabolic disease? Future Lipidol.1(4), 389–420 (2006).
  • Bays HE, Gonzalez-Campoy JM, Bray GA et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev. Cardiovasc. Ther.6(3), 343–368 (2008).
  • Bays HE, Gonzalez-Campoy JM, Henry RR et al. Is adiposopathy (sick fat) an endocrine disease? Int. J. Clin. Pract.62(10), 1474–1483 (2008).
  • Roche AF. The adipocyte-number hypothesis. Child Dev.52(1), 31–43 (1981).
  • Zhu X, He Q, Lin Z. Human preadipocyte culture and the establishment of hyperplasia and hypertrophy model. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi15(3), 199–201 (1999).
  • Dubois SG, Heilbronn LK, Smith SR, Albu JB, Kelley DE, Ravussin E. Decreased expression of adipogenic genes in obese subjects with Type 2 diabetes. Obesity (Silver Spring)14(9), 1543–1552 (2006).
  • Gregoire FM. Adipocyte differentiation: from fibroblast to endocrine cell. Exp. Biol. Med. (Maywood)226(11), 997–1002 (2001).
  • Haller H, Leonhardt W, Hanefeld M, Julius U. Relationship between adipocyte hypertrophy and metabolic disturbances. Endokrinologie74(1), 63–72 (1979).
  • Smith U. Effect of cell size on lipid synthesis by human adipose tissue in vitro. J. Lipid Res.12(1), 65–70 (1971).
  • Bray GA, Glennon JA, Salans LB, Horton ES, Danforth E Jr, Sims EA. Spontaneous and experimental human obesity: effects of diet and adipose cell size on lipolysis and lipogenesis. Metabolism26(7), 739–747 (1977).
  • Salans LB, Bray GA, Cushman SW et al. Glucose metabolism and the response to insulin by human adipose tissue in spontaneous and experimental obesity. Effects of dietary composition and adipose cell size. J. Clin. Invest.53(3), 848–856 (1974).
  • Hissin PJ, Foley JE, Wardzala LJ et al. Mechanism of insulin-resistant glucose transport activity in the enlarged adipose cell of the aged, obese rat. J. Clin. Invest.70(4), 780–790 (1982).
  • Bays H, Dujovne CA. Adiposopathy is a more rational treatment target for metabolic disease than obesity alone. Curr. Atheroscler. Rep.8(2), 144–156 (2006).
  • Karelis AD, St-Pierre DH, Conus F, Rabasa-Lhoret R, Poehlman ET. Metabolic and body composition factors in subgroups of obesity: what do we know? J. Clin. Endocrinol. Metab.89(6), 2569–2575 (2004).
  • Bays HE. Anthropometric measurements and diabetes mellitus: clues to the ‘pathogenic’ and ‘protective’ potential of adipose tissue. Metab. Syndr. Relat. Disord.8(4), 307–315 (2010).
  • Tchkonia T, Lenburg M, Thomou T et al. Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am. J. Physiol. Endocrinol. Metab.292(1), E298–E307 (2007).
  • Bergman RN, Kim SP, Catalano KJ et al. Why visceral fat is bad: mechanisms of the metabolic syndrome. Obesity (Silver Spring)14(Suppl. 1), 16S–19S (2006).
  • Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts Type II diabetes independent of insulin resistance. Diabetologia43(12), 1498–1506 (2000).
  • Bays HE. Lorcaserin and adiposopathy: 5-HT2c agonism as a treatment for ‘sick fat’ and metabolic disease. Expert Rev. Cardiovasc. Ther.7(11), 1429–1445 (2009).
  • Sims EA. Are there persons who are obese, but metabolically healthy? Metabolism50(12), 1499–1504 (2001).
  • Bays H, Blonde L, Rosenson R. Adiposopathy: how do diet, exercise, weight loss and drug therapies improve metabolic disease? Expert Rev. Cardiovasc. Ther.4(6), 871–895 (2006).
  • Lebovitz HE. The relationship of obesity to the metabolic syndrome. Int. J. Clin. Pract. Suppl.134, 18–27 (2003).
  • Dusserre E, Moulin P, Vidal H. Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochim. Biophys. Acta1500(1), 88–96 (2000).
  • Vague J. La differenciation sexuelle, facteur determinant des formes de l’obesite. Presse Med.30, 339–340 (1947).
  • Schaffler A, Müller-Ladner U, Schölmerich J, Buchler C. Role of adipose tissue as an inflammatory organ in human diseases. Endocr. Rev.27(5), 449–467 (2006).
  • Imbeault P, Lemieux S, Prud’homme D et al. Relationship of visceral adipose tissue to metabolic risk factors for coronary heart disease: is there a contribution of subcutaneous fat cell hypertrophy? Metabolism48(3), 355–362 (1999).
  • Klein S. The case of visceral fat: argument for the defense. J. Clin. Invest.113(11), 1530–1532 (2004).
  • Johnson JA, Fried SK, Pi-Sunyer FX, Albu JB. Impaired insulin action in subcutaneous adipocytes from women with visceral obesity. Am. J. Physiol. Endocrinol. Metab.280(1), E40–E49 (2001).
  • Jensen MD. Is visceral fat involved in the pathogenesis of the metabolic syndrome? Human model. Obesity (Silver Spring)14(Suppl. 1), 20S–24S (2006).
  • Jensen MD, Johnson CM. Contribution of leg and splanchnic free fatty acid (FFA) kinetics to postabsorptive FFA flux in men and women. Metabolism45(5), 662–666 (1996).
  • Abate N, Garg A, Peshock RM, Stray-Gundersen J, Adams-Huet B, Grundy SM. Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM. Diabetes45(12), 1684–1693 (1996).
  • Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes46(10), 1579–1585 (1997).
  • Bluher M. Adipose tissue dysfunction in obesity. Exp. Clin. Endocrinol. Diabetes117(6), 241–250 (2009).
  • Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int. J. Obes. (Lond.)33(1), 54–66 (2009).
  • Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab.89(6), 2548–2556 (2004).
  • Jazet IM, Pijl H, Meinders AE. Adipose tissue as an endocrine organ: impact on insulin resistance. Neth. J. Med.61(6), 194–212 (2003).
  • Miner JL. The adipocyte as an endocrine cell. J. Anim. Sci.82(3), 935–941 (2004).
  • Ahima RS. Adipose tissue as an endocrine organ. Obesity (Silver Spring)14(Suppl. 5), 242S–249S (2006).
  • Caspar-Bauguil S, Cousin B, Galinier A et al. Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett.579(17), 3487–3492 (2005).
  • Fantuzzi G. Adipose tissue, adipokines, and inflammation. J. Allergy Clin. Immunol.115(5), 911–919 (2005).
  • Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem. Soc. Trans.33(Pt 5), 1078–1081 (2005).
  • Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest.112(12), 1785–1788 (2003).
  • Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J. Am. Soc. Nephrol.15(11), 2792–2800 (2004).
  • Kougias P, Chai H, Lin PH, Yao Q, Lumsden AB, Chen C. Effects of adipocyte-derived cytokines on endothelial functions: implication of vascular disease. J. Surg. Res.126(1), 121–129 (2005).
  • Ortega Martinez de V, Xu X, Koska J et al. Macrophage content in subcutaneous adipose tissue: associations with adiposity, age, inflammatory markers, and whole-body insulin action in healthy Pima Indians. Diabetes58(2), 385–393 (2009).
  • Bays HE, Laferrere B, Dixon J et al. Adiposopathy and bariatric surgery: is ‘sick fat’ a surgical disease? Int. J. Clin. Pract.63(9), 1285–1300 (2009).
  • Frayn KN, Summers LK, Fielding BA. Regulation of the plasma non-esterified fatty acid concentration in the postprandial state. Proc. Nutr. Soc.56(2), 713–721 (1997).
  • Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of Type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J. Clin. Endocrinol. Metab.89(2), 463–478 (2004).
  • Storlien L, Oakes ND, Kelley DE. Metabolic flexibility. Proc. Nutr. Soc.63(2), 363–368 (2004).
  • Bays HE, Rodbard RW, Schorr AB, González-Campoy JM. Treating pathogenic adipose tissue (adiposopathy) to reduce cardiovascular disease risk. Curr. Treat. Options Cardiovasc. Med.9(4), 259–271 (2007).
  • Adams JM, Pratipanawatr T, Berria R et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes53(1), 25–31 (2004).
  • Chavez JA, Holland WL, Bar J, Sandhoff K, Summers SA. Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J. Biol. Chem.280(20), 20148–20153 (2005).
  • Kelley DE, Goodpaster BH. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diabetes Care24(5), 933–941 (2001).
  • Grill V, Persson G, Carlsson S et al. Family history of diabetes in middle-aged Swedish men is a gender unrelated factor which associates with insulinopenia in newly diagnosed diabetic subjects. Diabetologia42(1), 15–23 (1999).
  • Lillioja S, Mott DM, Spraul M et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N. Engl. J. Med.329(27), 1988–1992 (1993).
  • Bays HE. Current and investigational antiobesity agents and obesity therapeutic treatment targets. Obes. Res.12(8), 1197–1211 (2004).
  • Villarroya F, Domingo P, Giralt M. Drug-induced lipotoxicity: lipodystrophy associated with HIV-1 infection and antiretroviral treatment. Biochim. Biophys. Acta1801(3), 392–399 (2010).
  • Tsai AG, Wadden TA. Systematic review: an evaluation of major commercial weight loss programs in the United States. Ann. Intern. Med.142(1), 56–66 (2005).
  • Varady KA, Tussing L, Bhutani S, Braunschweig CL. Degree of weight loss required to improve adipokine concentrations and decrease fat cell size in severely obese women. Metabolism58(8), 1096–1101 (2009).
  • Ratner RE. An update on the Diabetes Prevention Program. Endocr. Pract.12(Suppl. 1), 20–24 (2006).
  • Nair RP, Ren J. Pharmacotherapy of obesity – benefit, bias and hyperbole. Curr. Med. Chem.16(15), 1888–1897 (2009).
  • Aubin D, Gagnon A, Grunder L, Dent R, Allen M, Sorisky A. Adipogenic and antiapoptotic protein levels in human adipose stromal cells after weight loss. Obes. Res.12(8), 1231–1234 (2004).
  • Zhu M, Lee GD, Ding L et al. Adipogenic signaling in rat white adipose tissue: modulation by aging and calorie restriction. Exp. Gerontol.42(8), 733–744 (2007).
  • Levine JA. Measurement of energy expenditure. Public Health Nutr.8(7A), 1123–1132 (2005).
  • Flatt JP. Differences in basal energy expenditure and obesity. Obesity (Silver Spring)15(11), 2546–2548 (2007).
  • Livingston EH, Kohlstadt I. Simplified resting metabolic rate-predicting formulas for normal-sized and obese individuals. Obes. Res.13(7), 1255–1262 (2005).
  • Weinsier RL, Nagy TR, Hunter GR, Darnell BE, Hensrud DD, Weiss HL. Do adaptive changes in metabolic rate favor weight regain in weight-reduced individuals? An examination of the set-point theory. Am. J. Clin. Nutr.72(5), 1088–1094 (2000).
  • Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am. J. Clin. Nutr.88(4), 906–912 (2008).
  • Goldsmith R, Joanisse DR, Gallagher D et al. Effects of experimental weight perturbation on skeletal muscle work efficiency, fuel utilization, and biochemistry in human subjects. Am. J. Physiol. Regul. Integr. Comp. Physiol.298(1), R79–R88 (2010).
  • Stiegler P, Cunliffe A. The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med.36(3), 239–262 (2006).
  • Gibson WT, Farooqi IS, Moreau M et al. Congenital leptin deficiency due to homozygosity for the d133G mutation: report of another case and evaluation of response to four years of leptin therapy. J. Clin. Endocrinol. Metab.89(10), 4821–4826 (2004).
  • Farooqi IS, O’Rahilly S. Leptin: a pivotal regulator of human energy homeostasis. Am. J. Clin. Nutr.89(3), 980S–984S (2009).
  • Rosenbaum M, Goldsmith R, Bloomfield D et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J. Clin. Invest.115(12), 3579–3586 (2005).
  • Flores MB, Fernandes MF, Ropelle ER et al. Exercise improves insulin and leptin sensitivity in hypothalamus of Wistar rats. Diabetes55(9), 2554–2561 (2006).
  • Bjorbaek C. Central leptin receptor action and resistance in obesity. J. Investig. Med.57(7), 789–794 (2009).
  • King NA, Hopkins M, Caudwell P, Stubbs RJ, Blundell JE. Beneficial effects of exercise: shifting the focus from body weight to other markers of health. Br. J. Sports Med.43(12), 924–927 (2009).
  • Chaston TB, Dixon JB, O’Brien PE. Changes in fat-free mass during significant weight loss: a systematic review. Int. J. Obes. (Lond.)31(5), 743–750 (2007).
  • Metcalf B, Rabkin RA, Rabkin JM, Metcalf LJ, Lehman-Becker LB. Weight loss composition: the effects of exercise following obesity surgery as measured by bioelectrical impedance analysis. Obes. Surg.15(2), 183–186 (2005).
  • Larson-Meyer DE, Redman L, Heilbronn LK, Martin CK, Ravussin E. Caloric restriction with or without exercise: the fitness versus fatness debate. Med. Sci. Sports Exerc.42(1), 152–159 (2010).
  • Wadden TA, Berkowitz RI, Womble LG, Sarwer DB, Arnold ME, Steinberg CM. Effects of sibutramine plus orlistat in obese women following 1 year of treatment by sibutramine alone: a placebo-controlled trial. Obes. Res.8(6), 431–437 (2000).
  • Colman E. Anorectics on trial: a half century of federal regulation of prescription appetite suppressants. Ann. Intern. Med.143(5), 380–385 (2005).
  • Coyne TC. Phentermine – resin or salt – there are differences. Arch. Intern. Med.157(20), 2381–2382 (1997).
  • Greenway FL, Caruso MK. Safety of obesity drugs. Expert Opin. Drug Saf.4(6), 1083–1095 (2005).
  • Kim B. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid18(2), 141–144 (2008).
  • al-Adsani H, Hoffer LJ, Silva JE. Resting energy expenditure is sensitive to small dose changes in patients on chronic thyroidxhormone replacement. J. Clin. Endocrinol. Metab.82(4), 1118–1125 (1997).
  • Danforth E Jr, Burger A. The role of thyroid hormones in the control of energy expenditure. Clin. Endocrinol. Metab.13(3), 581–595 (1984).
  • The Coronary Drug Project. Findings leading to further modifications of its protocol with respect to dextrothyroxine. The Coronary Drug Project research group. JAMA220(7), 996–1008 (1972).
  • Lesses MF, Myerson A. Human autonomic pharmacology. XVI. Benzedrine sulfate as an aid in the treatment of obesity. 1938. Obes. Res.2(3), 286–292 (1994).
  • Pasquali R, Casimirri F, Melchionda N et al. Effects of chronic administration of ephedrine during very-low-calorie diets on energy expenditure, protein metabolism and hormone levels in obese subjects. Clin. Sci. (Lond.)82(1), 85–92 (1992).
  • Lorello C, Goldfield GS, Doucet E. Methylphenidate hydrochloride increases energy expenditure in healthy adults. Obesity (Silver Spring)16(2), 470–472 (2008).
  • Jones JR, Caul WF, Hill JO. The effects of amphetamine on body weight and energy expenditure. Physiol. Behav.51(3), 607–611 (1992).
  • Lang SS, Danforth E Jr, Lien EL. Anorectic drugs which stimulate thermogenesis. Life Sci.33(13), 1269–1275 (1983).
  • Bushnell PJ. Differential effects of amphetamine and related compounds on locomotor activity and metabolic rate in mice. Pharmacol. Biochem. Behav.25(1), 161–170 (1986).
  • Crowley WR, Ramoz G, Keefe KA, Torto R, Kalra SP, Hanson GR. Differential effects of methamphetamine on expression of neuropeptide Y mRNA in hypothalamus and on serum leptin and ghrelin concentrations in ad libitum-fed and schedule-fed rats. Neuroscience132(1), 167–173 (2005).
  • Jaworska L, Budziszewska B, Lason W. The effect of repeated amphetamine administration on the proopiomelanocortin mRNA level in the rat pituitary: an in situ hybridization study. Drug Alcohol Depend.36(2), 123–127 (1994).
  • Menyhert J, Wittmann G, Lechan RM, Keller E, Liposits Z, Fekete C. Cocaine- and amphetamine-regulated transcript (CART) is colocalized with the orexigenic neuropeptide Y and agouti-related protein and absent from the anorexigenic a-melanocyte-stimulating hormone neurons in the infundibular nucleus of the human hypothalamus. Endocrinology148(9), 4276–4281 (2007).
  • Balcioglu A, Wurtman RJ. Effects of phentermine on striatal dopamine and serotonin release in conscious rats: in vivo microdialysis study. Int. J. Obes. Relat. Metab. Disord.22(4), 325–328 (1998).
  • Alexander M, Rothman RB, Baumann MH, Endres CJ, Brasic JR, Wong DF. Noradrenergic and dopaminergic effects of (+)-amphetamine-like stimulants in the baboon Papio anubis. Synapse56(2), 94–99 (2005).
  • Matera C, Wardlaw SL. Dopamine and sex steroid regulation of POMC gene expression in the hypothalamus. Neuroendocrinology58(5), 493–500 (1993).
  • Hirsch J, Mackintosh RM, Aronne LJ. The effects of drugs used to treat obesity on the autonomic nervous system. Obes. Res.8(3), 227–233 (2000).
  • Kim KK, Cho HJ, Kang HC, Youn BB, Lee KR. Effects on weight reduction and safety of short-term phentermine administration in Korean obese people. Yonsei Med. J.47(5), 614–625 (2006).
  • Aronne LJ, Halseth AE, Burns CM, Miller S, Shen LZ. Enhanced weight loss following coadministration of pramlintide with sibutramine or phentermine in a multicenter trial. Obesity (Silver Spring) DOI: 10.1038/oby.2009.478 (2010) (Epub ahead of print).
  • Maryanoff BE. Sugar sulfamates for seizure control: discovery and development of topiramate, a structurally unique antiepileptic drug. Curr. Top. Med. Chem.9(11), 1049–1062 (2009).
  • Eliasson B, Gudbjornsdottir S, Cederholm J, Liang Y, Vercruysse F, Smith U. Weight loss and metabolic effects of topiramate in overweight and obese Type 2 diabetic patients: randomized double-blind placebo-controlled trial. Int. J. Obes. (Lond.)31(7), 1140–1147 (2007).
  • Khanna V, Arumugam S, Roy S, Mittra S, Bansal VS. Topiramate and Type 2 diabetes: an old wine in a new bottle. Expert Opin. Ther. Targets12(1), 81–90 (2008).
  • Beydoun A. Monotherapy trials of new antiepileptic drugs. Epilepsia38(Suppl. 9), S21–S31 (1997).
  • Leombruni P, Lavagnino L, Fassino S. Treatment of obese patients with binge eating disorder using topiramate: a review. Neuropsychiatr. Dis. Treat.5, 385–392 (2009).
  • Shorvon SD. Safety of topiramate: adverse events and relationships to dosing. Epilepsia37(Suppl. 2), S18–S22 (1996).
  • Ben-Menachem E, Axelsen M, Johanson EH, Stagge A, Smith U. Predictors of weight loss in adults with topiramate-treated epilepsy. Obes. Res.11(4), 556–562 (2003).
  • Wilding J, Van Gaal L, Rissanen A, Vercruysse F, Fitchet M. A randomized double-blind placebo-controlled study of the long-term efficacy and safety of topiramate in the treatment of obese subjects. Int. J. Obes. Relat. Metab. Disord.28(11), 1399–1410 (2004).
  • Stenlof K, Rossner S, Vercruysse F, Kumar A, Fitchet M, Sjostrom L. Topiramate in the treatment of obese subjects with drug-naive Type 2 diabetes. Diabetes Obes. Metab.9(3), 360–368 (2007).
  • Bray GA, Hollander P, Klein S et al. A 6-month randomized, placebo-controlled, dose-ranging trial of topiramate for weight loss in obesity. Obes. Res.11(6), 722–733 (2003).
  • Astrup A, Toubro S. Topiramate: a new potential pharmacological treatment for obesity. Obes. Res.12(Suppl.), 167S–173S (2004).
  • Astrup A, Caterson I, Zelissen P et al. Topiramate: long-term maintenance of weight loss induced by a low-calorie diet in obese subjects. Obes. Res.12(10), 1658–1669 (2004).
  • Schutt M, Brinkhoff J, Drenckhan M, Lehnert H, Sommer C. Weight reducing and metabolic effects of topiramate in patients with migraine – an observational study. Exp. Clin. Endocrinol. Diabetes118(7), 449–452 (2010).
  • Mizielinska SM. Ion channels in epilepsy. Biochem. Soc. Trans.35(Pt 5), 1077–1079 (2007).
  • Braga MF, Aroniadou-Anderjaska V, Li H, Rogawski MA. Topiramate reduces excitability in the basolateral amygdala by selectively inhibiting GluK1 (GluR5) kainate receptors on interneurons and positively modulating GABAA receptors on principal neurons. J. Pharmacol. Exp. Ther.330(2), 558–566 (2009).
  • Khazaal Y, Zullino DF. Topiramate-induced weight loss is possibly due to the blockade of conditioned and automatic processes. Eur. J. Clin. Pharmacol.63(9), 891–892 (2007).
  • McElroy SL, Arnold LM, Shapira NA et al. Topiramate in the treatment of binge eating disorder associated with obesity: a randomized, placebo-controlled trial. Am. J. Psychiatr.160(2), 255–261 (2003).
  • Khazaal Y, Zullino DF. Topiramate in the treatment of compulsive sexual behavior: case report. BMC Psychiatry6, 22 (2006).
  • Turenius CI, Htut MM, Prodon DA et al. GABA(A) receptors in the lateral hypothalamus as mediators of satiety and body weight regulation. Brain Res.1262, 16–24 (2009).
  • Erondu N, Gantz I, Musser B et al. Neuropeptide Y5 receptor antagonism does not induce clinically meaningful weight loss in overweight and obese adults. Cell Metab.4(4), 275–282 (2006).
  • Erondu N, Wadden T, Gantz I et al. Effect of NPY5R antagonist MK-0557 on weight regain after very-low-calorie diet-induced weight loss. Obesity (Silver Spring)15(4), 895–905 (2007).
  • Husum H, Van Kammen D, Termeer E, Bolwig G, Mathe A. Topiramate normalizes hippocampal NPY-LI in flinders sensitive line ‘depressed’ rats and upregulates NPY, galanin, and CRH-LI in the hypothalamus: implications for mood-stabilizing and weight loss-inducing effects. Neuropsychopharmacology28(7), 1292–1299 (2003).
  • Heiman ML, Statnick MA. Galanin-like peptide functions more like leptin than like galanin. Endocrinology144(11), 4707–4708 (2003).
  • Theisen FM, Beyenburg S, Gebhardt S et al. A prospective study of body weight and serum leptin levels in patients treated with topiramate. Clin. Neuropharmacol.31(4), 226–230 (2008).
  • Tremblay A, Chaput JP. About the appetite-related effects of topiramate. Eur. J. Clin. Pharmacol.63, 893 (2007).
  • Picard F, Deshaies Y, Lalonde J, Samson P, Richard D. Topiramate reduces energy and fat gains in lean (Fa/?) and obese (fa/fa) Zucker rats. Obes. Res.8(9), 656–663 (2000).
  • Richard D, Picard F, Lemieux C, Lalonde J, Samson P, Deshaies Y. The effects of topiramate and sex hormones on energy balance of male and female rats. Int. J. Obes. Relat. Metab. Disord.26(3), 344–353 (2002).
  • Winum JY, Scozzafava A, Montero JL, Supuran CT. Sulfamates and their therapeutic potential. Med. Res. Rev.25(2), 186–228 (2005).
  • Poulsen SA, Wilkinson BL, Innocenti A, Vullo D, Supuran CT. Inhibition of human mitochondrial carbonic anhydrases VA and VB with para-(4-phenyltriazole-1-yl)-benzenesulfonamide derivatives. Bioorg. Med. Chem. Lett.18(16), 4624–4627 (2008).
  • Vullo D, Franchi M, Gallori E, Antel J, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of mitochondrial isozyme V with aromatic and heterocyclic sulfonamides. J. Med. Chem.47(5), 1272–1279 (2004).
  • Richard D, Ferland J, Lalonde J, Samson P, Deshaies Y. Influence of topiramate in the regulation of energy balance. Nutrition16(10), 961–966 (2000).
  • Wilkes JJ, Nguyen MT, Bandyopadhyay GK, Nelson E, Olefsky JM. Topiramate treatment causes skeletal muscle insulin sensitization and increased Acrp30 secretion in high-fat-fed male Wistar rats. Am. J. Physiol. Endocrinol. Metab.289(6), E1015–E1022 (2005).
  • Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest.116(7), 1784–1792 (2006).
  • Dridi S, Taouis M. Adiponectin and energy homeostasis: consensus and controversy. J. Nutr. Biochem.20(11), 831–839 (2009).
  • Silberstein SD, Neto W, Schmitt J, Jacobs D. Topiramate in migraine prevention: results of a large controlled trial. Arch. Neurol.61(4), 490–495 (2004).
  • Lachkar Y, Bouassida W. Drug-induced acute angle closure glaucoma. Curr. Opin. Ophthalmol.18(2), 129–133 (2007).
  • Lee GC, Tam CP, Nesh-Meyer HV, Myers JS, Katz LJ. Bilateral angle closure glaucoma induced by sulphonamide-derived medications. Clin. Experiment. Ophthalmol.35(1), 55–58 (2007).
  • Sachi D, Vijaya L. Topiramate induced secondary angle closure glaucoma. J. Postgrad. Med.52(1), 72–73 (2006).
  • Lai JS, Tham CC, Chua JK et al. To compare argon laser peripheral iridoplasty (ALPI) against systemic medications in treatment of acute primary angle-closure: mid-term results. Eye (Lond.)20(3), 309–314 (2006).
  • Mincione F, Scozzafava A, Supuran CT. The development of topically acting carbonic anhydrase inhibitors as anti-glaucoma agents. Curr. Top. Med. Chem.7(9), 849–854 (2007).
  • Celebisoy N, Gokcay F, Sirin H, Akyurekli O. Treatment of idiopathic intracranial hypertension: topiramate vs acetazolamide, an open-label study. Acta Neurol. Scand.116(5), 322–327 (2007).
  • Mirza N, Marson AG, Pirmohamed M. Effect of topiramate on acid-base balance: extent, mechanism and effects. Br. J. Clin. Pharmacol.68(5), 655–661 (2009).
  • Vega D, Maalouf NM, Sakhaee K. Increased propensity for calcium phosphate kidney stones with topiramate use. Expert Opin. Drug Saf.6(5), 547–557 (2007).
  • Galicia SC, Lewis SL, Metman LV. Severe topiramate-associated hyperthermia resulting in persistent neurological dysfunction. Clin. Neuropharmacol.28(2), 94–95 (2005).
  • Vahedi K, Taupin P, Djomby R et al. Efficacy and tolerability of acetazolamide in migraine prophylaxis: a randomised placebo-controlled trial. J. Neurol.249(2), 206–211 (2002).
  • Epstein DL, Grant WM. Carbonic anhydrase inhibitor side effects. Serum chemical analysis. Arch. Ophthalmol.95(8), 1378–1382 (1977).
  • Bays H. Adiposopathy: the endocannabinoid system as a therapeutic treatment target for dysfunctional ‘sick’ fat. Californian J. Health Promot.19(1), 32–39 (2007).
  • Di Marzo V, Despres JP. CB1 antagonists for obesity – what lessons have we learned from rimonabant? Nat. Rev. Endocrinol.5(11), 633–638 (2009).
  • Lee HK, Choi EB, Pak CS. The current status and future perspectives of studies of cannabinoid receptor 1 antagonists as anti-obesity agents. Curr. Top. Med. Chem.9(6), 482–503 (2009).
  • Christman DS, Faubion MD. Suicide attempt following initiation of topiramate. Am. J. Psychiatry164(4), 682–683 (2007).
  • Patorno E, Bohn RL, Wahl PM et al. Anticonvulsant medications and the risk of suicide, attempted suicide, or violent death. JAMA303(14), 1401–1409 (2010).
  • Kuriya B, Schneid EC, Bell CM. Quality of pharmaceutical industry press releases based on original research. PLoS One3(7), e2828 (2008).
  • Advokat C. What are the cognitive effects of stimulant medications? Emphasis on adults with attention-deficit/hyperactivity disorder (ADHD). Neurosci. Biobehav. Rev.34(8), 1256–1266 (2010).
  • Ryan D, Peterson C, Troupin B, Najarian T, Tam P, Day WP. Weight loss at 6 months with VI-0521 (PHEN/TPM combination) treatment. Presented at: 17th Annual European Congress on Obesity (ECO). Amsterdam, The Netherlands, 6–9 May 2009.
  • Aronne LJ, Peterson C, Troupin B, Najarian T, Day W. Weight loss with VI-0521 stops progression toward Type 2 diabetes in obese non-diabetic subjects. Presented at: American Diabetes Association 69th Scientific Session. New Orleans, LA, USA, 5–9 June 2009.
  • Garvey WT, Troupin B, Tam P, Najarian T, Peterson C, Day W. One year treatment with VI-0521 in Type 2 diabetes demonstrates continued glycemic improvement and weight loss. Presented at: American Diabetes Association 69th Scientific Session. New Orleans, LA, USA, 5–9 June 2009.
  • Garvey WT, Troupin B, Tam P, Najarian T, Day W. Can weight loss treat diabetes? Results of one year of treatment with VI-0521 in obese Type 2 diabetics. Presented at: American Diabetes Association 69th Scientific Session. New Orleans, LA, USA, 5–9 June 2009.
  • Sayburn A. Withdrawal of sibutramine leaves European doctors with just one obesity drug. Br. Med. J.340, c477 (2010).
  • Bays H. Adiposopathy, metabolic syndrome, quantum physics, general relativity, chaos and the Theory of Everything. Expert Rev. Cardiovasc. Ther.3(3), 393–404 (2005).
  • Smith U. Visceral fat, like epicardial fat, is an ectopic fat depot which reflects cardiometabolic risk on obesity. J. Int. Chair Cardiometab. Risk1(2), 17–19 (2008).
  • Bays H. Adiposopathy – defining, diagnosing, and establishing indications to treat ‘sick fat’: what are the regulatory considerations? US Endocr. Dis.2, 12–14 (2006).
  • Heal DJ, Prow MR, Gosden J, Luscombe GP, Buckett WR. A comparison of various antidepressant drugs demonstrates rapid desensitisation of a 2-adrenoceptors exclusively by sibutramine hydrochloride. Psychopharmacology (Berl.)107(4), 497–502 (1992).
  • Sawbridge DT, Fitzgerald R. ‘Lazy, slothful and indolent’: medical and social perceptions of obesity in Europe to the eighteenth Century. Vesalius15(2), 59–70 (2009).
  • Adelman J, Freitag FG, Lainez M et al. Analysis of safety and tolerability data obtained from over 1,500 patients receiving topiramate for migraine prevention in controlled trials. Pain Med.9(2), 175–185 (2008).
  • Bays HE, Laferrere B, Dixon J et al. Adiposopathy and bariatric surgery: is ‘sick fat’ a surgical disease? A consensus from the adiposopathy and bariatric surgery group. Int. J. Clin. Pract.63(9), 1285–1300 (2009).
  • Wilkes JJ, Nelson E, Osborne M, Demarest KT, Olefsky JM. Topiramate is an insulin-sensitizing compound in vivo with direct effects on adipocytes in female ZDF rats. Am. J. Physiol. Endocrinol. Metab.288(3), E617–E624 (2005).
  • Bays H. The melanocortin system as a therapeutic treatment target for adiposity and adiposopathy. Drugs R. D.7(5), 289–302 (2006).
  • Garfield AS, Heisler LK. Pharmacological targeting of the serotonergic system for the treatment of obesity. J. Physiol.587(Pt 1), 49–60 (2009).
  • Qi Y, Takahashi N, Hileman SM et al. Adiponectin acts in the brain to decrease body weight. Nat. Med.10(5), 524–529 (2004).
  • Spranger J, Verma S, Gohring I et al. Adiponectin does not cross the blood–brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes55(1), 141–147 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.