244
Views
17
CrossRef citations to date
0
Altmetric
Theme: Vascular Disease & Stroke - Review

Advances in diagnostic imaging for peripheral arterial disease

, &
Pages 1447-1455 | Published online: 10 Jan 2014

References

  • Elgzyri T, Ekberg G, Peterson K, Lundell A, Apelqvist J. Can duplex arterial ultrasonography reduce unnecessary angiography? J. Wound Care17(11), 497–500 (2008).
  • Hingorani AP, Ascher E, Marks N et al. Limitations of and lessons learned from clinical experience of 1,020 duplex arteriography. Vascular16(3), 147–153 (2008).
  • Schwarcz TH, Gatz VL, Little S, Geddings CF. Arterial duplex ultrasound is the most cost-effective, noninvasive diagnostic imaging modality before treatment of lower-extremity arterial occlusive disease. J. Vasc. Ultrasound33(2), 75–79 (2009).
  • Leiner T, Kessels AG, Nelemans PJ et al. Peripheral arterial disease: comparison of color duplex US and contrast-enhanced MR angiography for diagnosis. Radiology235(2), 699–708 (2005).
  • Favaretto E, Pili C, Amato A et al. Analysis of agreement between duplex ultrasound scanning and arteriography in patients with lower limb artery disease. J. Cardiovasc. Med. (Hagerstown)8(5), 337–341 (2007).
  • Langer S, Kramer N, Mommertz G et al. Unmasking pedal arteries in patients with critical ischemia using time-resolved contrast-enhanced 3D MRA. J. Vasc. Surg.49(5), 1196–1202 (2009).
  • Coffi SB, Ubbink DT, Zwiers I, van Gurp JA, Hanson D, Legemate DA. Contrast-enhanced duplex scanning of crural arteries by means of continuous infusion of Levovist. J. Vasc. Surg.39(3), 517–522 (2004).
  • Janvier MA, Destrempes F, Soulez G, Cloutier G. Validation of a new 3D-US imaging robotic system to detect and quantify lower limb arterial stenoses. Conf. Proc. IEEE Eng. Med. Biol. Soc.2007, 339–342 (2007).
  • Hingorani A, Ascher E, Marks N et al. Comparison of computed tomography angiography to contrast arteriography for patients undergoing evaluation for lower extremity revascularization. Vasc. Endovasc. Surg.41(2), 115–119 (2007).
  • Willmann JK, Baumert B, Schertler T et al. Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology236(3), 1083–1093 (2005).
  • Shareghi S, Gopal A, Gul K et al. Diagnostic accuracy of 64 multidetector computed tomographic angiography in peripheral vascular disease. Catheter. Cardiovasc. Interv.75(1), 23–31 (2010).
  • Cernic S, Pozzi Mucelli F, Pellegrin A, Pizzolato R, Cova MA. Comparison between 64-row CT angiography and digital subtraction angiography in the study of lower extremities: personal experience. Radiol. Med.114(7), 1115–1129 (2009).
  • Brockmann C, Jochum S, Sadick M et al. Dual-energy CT angiography in peripheral arterial occlusive disease. Cardiovasc. Intervent. Radiol.32(4), 630–637 (2009).
  • Bui BT, Miller S, Mildenberger P, Sam A 2nd, Sheng R. Comparison of contrast-enhanced MR angiography to intraarterial digital subtraction angiography for evaluation of peripheral arterial occlusive disease: results of a Phase III multicenter trial. J. Magn. Reson. Imaging31(6), 1402–1410 (2010).
  • Leiner T. Magnetic resonance angiography of abdominal and lower extremity vasculature. Top. Magn. Reson. Imaging16(1), 21–66 (2005).
  • Weinreb JC, Abu-Alfa AK. Gadolinium-based contrast agents and nephrogenic systemic fibrosis: why did it happen and what have we learned? J. Magn. Reson. Imaging30(6), 1236–1239 (2009).
  • Wertman R, Altun E, Martin DR et al. Risk of nephrogenic systemic fibrosis: evaluation of gadolinium chelate contrast agents at four American universities. Radiology248(3), 799–806 (2008).
  • Dinter DJ, Neff KW, Visciani G et al. Peripheral bolus-chase MR angiography: analysis of risk factors for nondiagnostic image quality of the calf vessels – a combined retrospective and prospective study. AJR Am. J. Roentgenol.193(1), 234–240 (2009).
  • Lim RP, Jacob JS, Hecht EM et al. Time-resolved lower extremity MRA with temporal interpolation and stochastic spiral trajectories: preliminary clinical experience. J. Magn. Reson. Imaging31(3), 663–672 (2010).
  • Nielsen YW, Eiberg JP, Logager VB, Just S, Schroeder TV, Thomsen HS. Whole-body magnetic resonance angiography with additional steady-state acquisition of the infragenicular arteries in patients with peripheral arterial disease. Cardiovasc. Intervent. Radiol.33(3), 484–491 (2010).
  • Berg F, Bangard C, Bovenschulte H et al. Feasibility of peripheral contrast-enhanced magnetic resonance angiography at 3.0 Tesla with a hybrid technique: comparison with digital subtraction angiography. Invest. Radiol.43(9), 642–649 (2008).
  • Kramer H, Michaely HJ, Matschl V, Schmitt P, Reiser MF, Schoenberg SO. High-resolution magnetic resonance angiography of the lower extremities with a dedicated 36-element matrix coil at 3 Tesla. Invest. Radiol.42(6), 477–483 (2007).
  • Gerretsen SC, le Maire TF, Miller S et al. Multicenter, double-blind, randomized, intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for MR angiography of peripheral arteries. Radiology255(3), 988–1000 (2010).
  • Eslami MH, Csikesz N, Schanzer A, Messina LM. Peripheral arterial interventions: trends in market share and outcomes by specialty, 1998–2005. J. Vasc. Surg.50(5), 1071–1078 (2009).
  • Bechara CF, Annambhotla S, Lin PH. Access site management with vascular closure devices for percutaneous transarterial procedures. J. Vasc. Surg. DOI: 10.1016/j.jvs.2010.04.079 (2010) (Epub ahead of print).
  • Engelbert TL, Scholten A, Thompson K, Spivack A, Kansal N. Early ambulation after percutaneous femoral access with use of closure devices and hemostatic agents. Ann. Vasc. Surg.24(4), 518–523 (2010).
  • Kashyap VS, Pavkov ML, Bishop PD et al. Angiography underestimates peripheral atherosclerosis: lumenography revisited. J. Endovasc. Ther.15(1), 117–125 (2008).
  • Madhusudhan KS, Sharma S, Srivastava DN et al. Comparison of intra-arterial digital subtraction angiography using carbon dioxide by ‘home made’ delivery system and conventional iodinated contrast media in the evaluation of peripheral arterial occlusive disease of the lower limbs. J. Med. Imaging Radiat. Oncol.53(1), 40–49 (2009).
  • Arthurs ZM, Bishop PD, Feiten LE, Eagleton MJ, Clair DG, Kashyap VS. Evaluation of peripheral atherosclerosis: a comparative analysis of angiography and intravascular ultrasound imaging. J. Vasc. Surg.51(4), 933–938 (2010).
  • Pearce BJ, Jordan WD Jr. Using IVUS during EVAR and TEVAR: improving patient outcomes. Semin. Vasc. Surg.22(3), 172–180 (2009).
  • Diethrich EB, Irshad K, Reid DB. Virtual histology and color flow intravascular ultrasound in peripheral interventions. Semin. Vasc. Surg.19(3), 155–162 (2006).
  • Kohno H, Sueda S. Rupture of a peripheral popliteal artery plaque documented by intravascular ultrasound: a case report. Catheter. Cardiovasc. Interv.74(7), 1102–1106 (2009).
  • El-Haddad G, Zhuang H, Gupta N, Alavi A. Evolving role of positron emission tomography in the management of patients with inflammatory and other benign disorders. Semin. Nucl. Med.34(4), 313–329 (2004).
  • Rudd JH, Myers KS, Bansilal S et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J. Nucl. Med.49(6), 871–878 (2008).
  • Sinusas AJ. Imaging of angiogenesis. J. Nucl. Cardiol.11(5), 617–633 (2004).
  • Buck AK, Herrmann K, Stargardt T, Dechow T, Krause BJ, Schreyogg J. Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J. Nucl. Med.51(3), 401–412 (2010).
  • Greenman RL, Panasyuk S, Wang X et al. Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. Lancet366(9498), 1711–1717 (2005).
  • Nouvong A, Hoogwerf B, Mohler E, Davis B, Tajaddini A, Medenilla E. Evaluation of diabetic foot ulcer healing with hyperspectral imaging of oxyhemoglobin and deoxyhemoglobin. Diabetes Care32(11), 2056–2061 (2009).
  • Cancio LC, Batchinsky AI, Mansfield JR et al. Hyperspectral imaging: a new approach to the diagnosis of hemorrhagic shock. J. Trauma60(5), 1087–1095 (2006).
  • Khaodhiar L, Dinh T, Schomacker KT et al. The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes. Diabetes Care30(4), 903–910 (2007).
  • Jaffer FA, Libby P, Weissleder R. Molecular and cellular imaging of atherosclerosis: emerging applications. J. Am. Coll. Cardiol.47(7), 1328–1338 (2006).
  • Osborn EA, Jaffer FA. Advances in molecular imaging of atherosclerotic vascular disease. Curr. Opin. Cardiol.23(6), 620–628 (2008).
  • Nahrendorf M, Zhang H, Hembrador S et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation117(3), 379–387 (2008).
  • Jaffer FA, Kim DE, Quinti L et al. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation115(17), 2292–2298 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.