73
Views
2
CrossRef citations to date
0
Altmetric
Theme: Cardiac Imaging - Review

Integrative computed tomographic imaging of coronary artery disease

, , , , &
Pages 27-43 | Published online: 10 Jan 2014

References

  • Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: Part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation104, 2855–2864 (2001).
  • Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation104, 2746–2753 (2001).
  • Quercioli A, Montecucco F, Bertolotto M et al. Coronary artery calcification and cardiovascular risk: the role of RANKL/OPG signalling. Eur. J. Clin. Invest.40, 645–654 (2010).
  • Bastarrika G, Lee YS, Huda W, Ruzsics B, Costello P, Schoepf UJ. CT of coronary artery disease. Radiology253, 317–338 (2009).
  • Meijboom WB, Meijs MF, Schuijf JD et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J. Am. Coll. Cardiol.52, 2135–2144 (2008).
  • Hadamitzky M, Freissmuth B, Meyer T et al. Prognostic value of coronary computed tomographic angiography for prediction of cardiac events in patients with suspected coronary artery disease. JACC Cardiovasc. Imaging2, 404–411 (2009).
  • van der Giessen AG, Toepker MH, Donelly PM et al. Reproducibility, accuracy, and predictors of accuracy for the detection of coronary atherosclerotic plaque composition by computed tomography: an ex vivo comparison to intravascular ultrasound. Invest. Radiol.45(11), 693–701 (2010).
  • Carrascosa P, Capunay C, Deviggiano A et al. Accuracy of low-dose prospectively gated axial coronary CT angiography for the assessment of coronary artery stenosis in patients with stable heart rate. J. Cardiovasc. Comput. Tomogr.4, 197–205 (2010).
  • de Graaf FR, Schuijf JD, van Velzen JE et al. Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography to noninvasively assess in-stent restenosis. Invest. Radiol.45, 331–340 (2010).
  • Klepzig H. Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur. Heart J.29, 680 (2008).
  • Leber AW, Johnson T, Becker A et al. Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur. Heart J.28, 2354–2360 (2007).
  • Kapoor D, Thompson RC. Diagnostic accuracy of CT coronary angiography. Cardiol. Clin.27, 563–571 (2009).
  • Arnoldi E, Ramos-Duran L, Abro JA et al. [Coronary CT angiography using prospective ECG triggering: high diagnostic accuracy with low radiation dose.] Radiologe50, 500–506 (2010).
  • Hessel SJ, Adams DF, Judy PF, Fishbein MC, Abrams HL. Detection of myocardial ischemia in vitro by computed tomography. Radiology127, 413–418 (1978).
  • Hilfiker PR, Weishaupt D, Marincek B. Multislice spiral computed tomography of subacute myocardial infarction. Circulation104, 1083 (2001).
  • Juergens KU, Grude M, Fallenberg EM et al. Using ECG-gated multidetector CT to evaluate global left ventricular myocardial function in patients with coronary artery disease. AJR Am. J. Roentgenol.179, 1545–1550 (2002).
  • Mahnken AH, Spuntrup E, Wildberger JE et al. [Quantification of cardiac function with multislice spiral CT using retrospective EKG-gating: comparison with MRI]. Rofo175, 83–88 (2003).
  • Mochizuki T, Murase K, Higashino H, Koyama Y, Azemoto S, Ikezoe J. Images in cardiovascular medicine. Demonstration of acute myocardial infarction by subsecond spiral computed tomography: early defect and delayed enhancement. Circulation99, 2058–2059 (1999).
  • Mohlenkamp S, Lerman LO, Lerman A et al. Minimally invasive evaluation of coronary microvascular function by electron beam computed tomography. Circulation102, 2411–2416 (2000).
  • Willmann JK, Weishaupt D, Lachat M et al. Electrocardiographically gated multi-detector row CT for assessment of valvular morphology and calcification in aortic stenosis. Radiology225, 120–128 (2002).
  • Leschka S, Stolzmann P, Desbiolles L et al. Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur. Radiol.19, 2896–2903 (2009).
  • George RT, Silva C, Cordeiro MA et al. Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J. Am. Coll. Cardiol.48, 153–160 (2006).
  • George RT, Arbab-Zadeh A, Miller JM et al. Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ. Cardiovasc. Imaging2, 174–182 (2009).
  • George RT, Jerosch-Herold M, Silva C et al. Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest. Radiol.42, 815–822 (2007).
  • Shen Y, Qian JY, Wang MH et al. Quantitative and qualitative assessment of non-obstructive left main coronary artery plaques using 64-multislice computed tomography compared with intravascular ultrasound. Chin. Med. J. (Engl.)123, 827–833 (2010).
  • van Werkhoven JM, Bax JJ, Nucifora G et al. The value of multi-slice-computed tomography coronary angiography for risk stratification. J. Nucl. Cardiol.16, 970–980 (2009).
  • Lipton MJ, Higgins CB, Farmer D, Boyd DP. Cardiac imaging with a high-speed Cine-CT scanner: preliminary results. Radiology152, 579–582 (1984).
  • Achenbach S, Ulzheimer S, Baum U et al. Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation102, 2823–2828 (2000).
  • Kachelriess M, Ulzheimer S, Kalender WA. ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med. Phys.27, 1881–1902 (2000).
  • Knez A, Becker CR, Leber A et al. Usefulness of multislice spiral computed tomography angiography for determination of coronary artery stenoses. Am. J. Cardiol.88, 1191–1194 (2001).
  • Ohnesorge B, Flohr T, Becker C et al. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. Radiology217, 564–571 (2000).
  • Schroeder S, Kopp AF, Baumbach A et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J. Am. Coll. Cardiol.37, 1430–1435 (2001).
  • Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U. Subsecond multi-slice computed tomography: basics and applications. Eur. J. Radiol.31, 110–124 (1999).
  • Dewey M, Hoffmann H, Hamm B. CT coronary angiography using 16 and 64 simultaneous detector rows: intraindividual comparison. Rofo179, 581–586 (2007).
  • Hamon M, Morello R, Riddell JW. Coronary arteries: diagnostic performance of 16- versus 64-section spiral CT compared with invasive coronary angiography – meta-analysis. Radiology245, 720–731 (2007).
  • Flohr T, Stierstorfer K, Raupach R, Ulzheimer S, Bruder H. Performance evaluation of a 64-slice CT system with z-flying focal spot. Rofo176, 1803–1810 (2004).
  • Herzog C, Britten M, Balzer JO et al. Multidetector-row cardiac CT: diagnostic value of calcium scoring and CT coronary angiography in patients with symptomatic, but atypical, chest pain. Eur. Radiol.14, 169–177 (2004).
  • Leschka S, Wildermuth S, Boehm T et al. Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology241, 378–385 (2006).
  • Flohr TG, McCollough CH, Bruder H et al. First performance evaluation of a dual-source CT (DSCT) system. Eur. Radiol.16, 256–268 (2006).
  • Johnson TR, Nikolaou K, Wintersperger BJ et al. Dual-source CT cardiac imaging: initial experience. Eur. Radiol.16, 1409–1415 (2006).
  • Achenbach S, Marwan M, Ropers D et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur. Heart J.31, 340–346 (2009).
  • Flohr TG, Leng S, Yu L et al. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: image reconstruction and assessment of image quality. Med. Phys.36, 5641–5653 (2009).
  • Mori S, Endo M, Nishizawa K, Murase K, Fujiwara H, Tanada S. Comparison of patient doses in 256-slice CT and 16-slice CT scanners. Br. J. Radiol.79, 56–61 (2006).
  • Rybicki FJ, Otero HJ, Steigner ML et al. Initial evaluation of coronary images from 320-detector row computed tomography. Int. J. Cardiovasc. Imaging24, 535–546 (2008).
  • Kido T, Kurata A, Higashino H et al. Cardiac imaging using 256-detector row four-dimensional CT: preliminary clinical report. Radiat. Med.25, 38–44 (2007).
  • Ruzsics B, Lee H, Powers ER, Flohr TG, Costello P, Schoepf UJ. Images in cardiovascular medicine. Myocardial ischemia diagnosed by dual-energy computed tomography: correlation with single-photon emission computed tomography. Circulation117, 1244–1245 (2008).
  • Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur. Radiol.18, 2414–2424 (2008).
  • Johnson TR, Krauss B, Sedlmair M et al. Material differentiation by dual energy CT: initial experience. Eur. Radiol.17, 1510–1517 (2007).
  • Flohr TG, Klotz E, Allmendinger T, Raupach R, Bruder H, Schmidt B. Pushing the envelope: new computed tomography techniques for cardiothoracic imaging. J. Thorac. Imaging25, 100–111 (2010).
  • Thibault JB, Sauer KD, Bouman CA, Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med. Phys.34, 4526–4544 (2007).
  • Greenland P, Bonow RO, Brundage BH et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography). Circulation115, 402–426 (2007).
  • Oudkerk M, Stillman AE, Halliburton SS et al. Coronary artery calcium screening: current status and recommendations from the European Society of Cardiac Radiology and North American Society for Cardiovascular Imaging. Eur. Radiol.18, 2785–2807 (2008).
  • Rumberger JA. Tomographic plaque imaging with CT: technical considerations and capabilities. Prog. Cardiovasc. Dis.46, 123–134 (2003).
  • Budoff MJ, Achenbach S, Blumenthal RS et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation114, 1761–1791 (2006).
  • Mahabadi AA, Bamberg F, Toepker M et al. Association of aortic valve calcification to the presence, extent, and composition of coronary artery plaque burden: from the Rule Out Myocardial Infarction using Computer Assisted Tomography (ROMICAT) trial. Am. Heart J.158, 562–568 (2009).
  • Sun Z, Ng KH. Multislice CT angiography in cardiac imaging. Part II: clinical applications in coronary artery disease. Singapore Med. J.51, 282–289 (2010).
  • Budoff MJ, Shaw LJ, Liu ST et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J. Am. Coll. Cardiol.49, 1860–1870 (2007).
  • Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA291, 210–215 (2004).
  • Min JK, Lin FY, Gidseg DS et al. Determinants of coronary calcium conversion among patients with a normal coronary calcium scan: what is the ‘warranty period’ for remaining normal? J. Am. Coll. Cardiol.55, 1110–1117 (2010).
  • Raggi P, Gongora MC, Gopal A, Callister TQ, Budoff M, Shaw LJ. Coronary artery calcium to predict all-cause mortality in elderly men and women. J. Am. Coll. Cardiol.52, 17–23 (2008).
  • Rozanski A, Gransar H, Wong ND et al. Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scintigraphy. J. Am. Coll. Cardiol.49, 1352–1361 (2007).
  • Detrano R, Guerci AD, Carr JJ et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med.358, 1336–1345 (2008).
  • Cheng VY, Lepor NE, Madyoon H, Eshaghian S, Naraghi AL, Shah PK. Presence and severity of noncalcified coronary plaque on 64-slice computed tomographic coronary angiography in patients with zero and low coronary artery calcium. Am. J. Cardiol.99, 1183–1186 (2007).
  • Henneman MM, Schuijf JD, Pundziute G et al. Noninvasive evaluation with multislice computed tomography in suspected acute coronary syndrome: plaque morphology on multislice computed tomography versus coronary calcium score. J. Am. Coll. Cardiol.52, 216–222 (2008).
  • Marwan M, Ropers D, Pflederer T, Daniel WG, Achenbach S. Clinical characteristics of patients with obstructive coronary lesions in the absence of coronary calcification: an evaluation by coronary CT angiography. Heart95, 1056–1060 (2009).
  • Rubinshtein R, Gaspar T, Halon DA, Goldstein J, Peled N, Lewis BS. Prevalence and extent of obstructive coronary artery disease in patients with zero or low calcium score undergoing 64-slice cardiac multidetector computed tomography for evaluation of a chest pain syndrome. Am. J. Cardiol.99, 472–475 (2007).
  • van der Bijl N, de Bruin PW, Geleijns J et al. Assessment of coronary artery calcium by using volumetric 320-row multi-detector computed tomography: comparison of 0.5 mm with 3.0 mm slice reconstructions. Int. J. Cardiovasc. Imaging26, 473–482 (2010).
  • Budoff MJ, Gul KM. Expert review on coronary calcium. Vasc. Health Risk Manag.4, 315–324 (2008).
  • Polonsky TS, McClelland RL, Jorgensen NW et al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA303, 1610–1616 (2010).
  • Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation106, 2051–2054 (2002).
  • Sun Z, Jiang W. Diagnostic value of multislice computed tomography angiography in coronary artery disease: a meta-analysis. Eur. J. Radiol.60, 279–286 (2006).
  • Budoff MJ, Dowe D, Jollis JG et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J. Am. Coll. Cardiol.52, 1724–1732 (2008).
  • Miller JM, Rochitte CE, Dewey M et al. Diagnostic performance of coronary angiography by 64-row CT. N. Engl. J. Med.359, 2324–2336 (2008).
  • Fine JJ, Hopkins CB, Ruff N, Newton FC. Comparison of accuracy of 64-slice cardiovascular computed tomography with coronary angiography in patients with suspected coronary artery disease. Am. J. Cardiol.97, 173–174 (2006).
  • Husmann L, Schepis T, Scheffel H et al. Comparison of diagnostic accuracy of 64-slice computed tomography coronary angiography in patients with low, intermediate, and high cardiovascular risk. Acad. Radiol.15, 452–461 (2008).
  • Leschka S, Alkadhi H, Plass A et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur. Heart J.26, 1482–1487 (2005).
  • Ropers U, Ropers D, Pflederer T et al. Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J. Am. Coll. Cardiol.50, 2393–2398 (2007).
  • Min JK, Feignoux J, Treutenaere J, Laperche T, Sablayrolles J. The prognostic value of multidetector coronary CT angiography for the prediction of major adverse cardiovascular events: a multicenter observational cohort study. Int. J. Cardiovasc. Imaging26, 721–728 (2010).
  • Husmann L, Gaemperli O, Schepis T et al. Accuracy of quantitative coronary angiography with computed tomography and its dependency on plaque composition: plaque composition and accuracy of cardiac CT. Int. J. Cardiovasc. Imaging24, 895–904 (2008).
  • Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J. Am. Coll. Cardiol.46, 552–557 (2005).
  • Ropers D, Rixe J, Anders K et al. Usefulness of multidetector row spiral computed tomography with 64- × 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am. J. Cardiol.97, 343–348 (2006).
  • Boll DT, Merkle EM, Paulson EK, Fleiter TR. Coronary stent patency: dual-energy multidetector CT assessment in a pilot study with anthropomorphic phantom. Radiology247, 687–695 (2008).
  • Boll DT, Merkle EM, Paulson EK, Mirza RA, Fleiter TR. Calcified vascular plaque specimens: assessment with cardiac dual-energy multidetector CT in anthropomorphically moving heart phantom. Radiology249, 119–126 (2008).
  • Oncel D, Oncel G, Tastan A. Effectiveness of dual-source CT coronary angiography for the evaluation of coronary artery disease in patients with atrial fibrillation: initial experience. Radiology245, 703–711 (2007).
  • Schoepf UJ, Zwerner PL, Savino G, Herzog C, Kerl JM, Costello P. Coronary CT angiography. Radiology244, 48–63 (2007).
  • Arnoldi E, Gebregziabher M, Schoepf UJ et al. Automated computer-aided stenosis detection at coronary CT angiography: initial experience. Eur. Radiol.20, 1160–1167 (2010).
  • Hendel RC, Patel MR, Kramer CM et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J. Am. Coll. Cardiol.48, 1475–1497 (2006).
  • Jacobs JE, Boxt LM, Desjardins B, Fishman EK, Larson PA, Schoepf J. ACR practice guideline for the performance and interpretation of cardiac computed tomography (CT). J. Am. Coll. Radiol.3, 677–685 (2006).
  • Kitagawa K, Choi BW, Chan C et al. ASCI 2010 appropriateness criteria for cardiac magnetic resonance imaging: a report of the Asian Society of Cardiovascular Imaging cardiac computed tomography and cardiac magnetic resonance imaging guideline working group. Int. J. Cardiovasc. Imaging26(Suppl. 1), 1–15 (2010).
  • Schoepf UJ, Becker CR, Obuchowski NA et al. Multi-slice computed tomography as a screening tool for colon cancer, lung cancer and coronary artery disease. Eur. Radiol.11, 1975–1985 (2001).
  • Schroeder S, Achenbach S, Bengel F et al. Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur. Heart J.29, 531–556 (2008).
  • Stillman AE, Oudkerk M, Ackerman M et al. Use of multidetector computed tomography for the assessment of acute chest pain: a consensus statement of the North American Society of Cardiac Imaging and the European Society of Cardiac Radiology. Eur. Radiol.17, 2196–2207 (2007).
  • Tsai IC, Choi BW, Chan C et al. ASCI 2010 appropriateness criteria for cardiac computed tomography: a report of the Asian Society of Cardiovascular Imaging Cardiac Computed Tomography and Cardiac Magnetic Resonance Imaging Guideline Working Group. Int. J. Cardiovasc. Imaging26(Suppl. 1), 1–15 (2010).
  • Henzler T, Hanley M, Arnoldi E, Bastarrika G, Schoepf UJ, Becker HC. Practical strategies for low radiation dose cardiac computed tomography. J. Thorac. Imaging25, 213–220 (2010).
  • Chow BJ, Hoffmann U, Nieman K. Computed tomographic coronary angiography: an alternative to invasive coronary angiography. Can. J. Cardiol.21, 933–940 (2005).
  • Haberl R, Tittus J, Bohme E et al. Multislice spiral computed tomographic angiography of coronary arteries in patients with suspected coronary artery disease: an effective filter before catheter angiography? Am. Heart J.149, 1112–1119 (2005).
  • Schoepf UJ, Becker CR, Ohnesorge BM, Yucel EK. CT of coronary artery disease. Radiology232, 18–37 (2004).
  • Onuma Y, Tanabe K, Chihara R et al. Evaluation of coronary artery bypass grafts and native coronary arteries using 64-slice multidetector computed tomography. Am. Heart J.154, 519–526 (2007).
  • Lee R, Lim J, Kaw G, Wan G, Ng K, Ho KT. Comprehensive noninvasive evaluation of bypass grafts and native coronary arteries in patients after coronary bypass surgery: accuracy of 64-slice multidetector computed tomography compared with invasive coronary angiography. J. Cardiovasc. Med. (Hagerstown)11, 81–90 (2010).
  • Auguadro C, Manfredi M, Scalise F et al. Multislice computed tomography for the evaluation of coronary bypass grafts and native coronary arteries: comparison with traditional angiography. J. Cardiovasc. Med. (Hagerstown)10, 454–460 (2009).
  • Feuchtner GM, Schachner T, Bonatti J et al. Diagnostic performance of 64-slice computed tomography in evaluation of coronary artery bypass grafts. AJR Am. J. Roentgenol.189, 574–580 (2007).
  • Nikolaou K, Saam T, Rist C et al. [Pre- and postsurgical diagnostics with dual-source computed tomography in cardiac surgery]. Radiologe47, 310–318 (2007).
  • Newell MC, Henry CR, Sigakis CJ et al. Comparison of safety and efficacy of sirolimus-eluting stents versus bare metal stents in patients with ST-segment elevation myocardial infarction. Am. J. Cardiol.97, 1299–1302 (2006).
  • Funabashi N, Komiyama N, Komuro I. Patency of coronary artery lumen surrounded by metallic stent evaluated by three dimensional volume rendering images using ECG gated multislice computed tomography. Heart89, 388 (2003).
  • Pump H, Mohlenkamp S, Sehnert CA et al. Coronary arterial stent patency: assessment with electron-beam CT. Radiology214, 447–452 (2000).
  • Kruger S, Mahnken AH, Sinha AM et al. Multislice spiral computed tomography for the detection of coronary stent restenosis and patency. Int. J. Cardiol.89, 167–172 (2003).
  • Maintz D, Grude M, Fallenberg EM, Heindel W, Fischbach R. Assessment of coronary arterial stents by multislice-CT angiography. Acta Radiol.44, 597–603 (2003).
  • Maintz D, Seifarth H, Raupach R et al. 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur. Radiol.16, 818–826 (2006).
  • Hamon M, Champ-Rigot L, Morello R, Riddell JW, Hamon M. Diagnostic accuracy of in-stent coronary restenosis detection with multislice spiral computed tomography: a meta-analysis. Eur. Radiol.18, 217–225 (2008).
  • Pugliese F, Weustink AC, Van Mieghem C et al. Dual source coronary computed tomography angiography for detecting in-stent restenosis. Heart94, 848–854 (2008).
  • Oncel D, Oncel G, Tastan A, Tamci B. Evaluation of coronary stent patency and in-stent restenosis with dual-source CT coronary angiography without heart rate control. AJR Am. J. Roentgenol.191, 56–63 (2008).
  • Sun Z, Davidson R, Lin CH. Multi-detector row CT angiography in the assessment of coronary in-stent restenosis: a systematic review. Eur. J. Radiol.69, 489–495 (2009).
  • Ghali JK, Liao Y, Simmons B, Castaner A, Cao G, Cooper RS. The prognostic role of left ventricular hypertrophy in patients with or without coronary artery disease. Ann. Intern. Med.117, 831–836 (1992).
  • Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med.322, 1561–1566 (1990).
  • Manyari DE. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med.323, 1706–1707 (1990).
  • White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation76, 44–51 (1987).
  • Busch S, Johnson TR, Wintersperger BJ et al. Quantitative assessment of left ventricular function with dual-source CT in comparison to cardiac magnetic resonance imaging: initial findings. Eur. Radiol.18, 570–575 (2008).
  • Gilard M, Pennec PY, Cornily JC et al. Multi-slice computer tomography of left ventricular function with automated analysis software in comparison with conventional ventriculography. Eur. J. Radiol.59, 270–275 (2006).
  • van der Vleuten PA, de Jonge GJ, Lubbers DD et al. Evaluation of global left ventricular function assessment by dual-source computed tomography compared with MRI. Eur. Radiol.19, 271–277 (2009).
  • Juergens KU, Grude M, Maintz D et al. Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology230, 403–410 (2004).
  • Dirksen MS, Bax JJ, de Roos A et al. Usefulness of dynamic multislice computed tomography of left ventricular function in unstable angina pectoris and comparison with echocardiography. Am. J. Cardiol.90, 1157–1160 (2002).
  • Fischbach R, Juergens KU, Ozgun M et al. Assessment of regional left ventricular function with multidetector-row computed tomography versus magnetic resonance imaging. Eur. Radiol.17, 1009–1017 (2007).
  • Halliburton SS, Petersilka M, Schvartzman PR, Obuchowski N, White RD. Evaluation of left ventricular dysfunction using multiphasic reconstructions of coronary multi-slice computed tomography data in patients with chronic ischemic heart disease: validation against cine magnetic resonance imaging. Int. J. Cardiovasc. Imaging19, 73–83 (2003).
  • Henneman MM, Schuijf JD, Jukema JW et al. Assessment of global and regional left ventricular function and volumes with 64-slice MSCT: a comparison with 2D echocardiography. J. Nucl. Cardiol.13, 480–487 (2006).
  • Mahnken AH, Koos R, Katoh M et al. Sixteen-slice spiral CT versus MR imaging for the assessment of left ventricular function in acute myocardial infarction. Eur. Radiol.15, 714–720 (2005).
  • Pflederer T, Ho KT, Anger T et al. Assessment of regional left ventricular function by dual source computed tomography: interobserver variability and validation to laevocardiography. Eur. J. Radiol.72, 85–91 (2009).
  • Bastarrika G, Arraiza M, De Cecco CN, Mastrobuoni S, Ubilla M, Rabago G. Quantification of left ventricular function and mass in heart transplant recipients using dual-source CT and MRI: initial clinical experience. Eur. Radiol.18, 1784–1790 (2008).
  • Bastarrika G, Arraiza M, De Cecco CN et al. Dual-source CT in heart transplant recipients: quantification of global left ventricular function and mass. J. Thorac. Imaging24, 103–109 (2009).
  • Mahnken AH, Muhlenbruch G, Koos R et al. Automated vs. manual assessment of left ventricular function in cardiac multidetector row computed tomography: comparison with magnetic resonance imaging. Eur. Radiol.16, 1416–1423 (2006).
  • Achenbach S, Moselewski F, Ropers D et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation109, 14–17 (2004).
  • Becker CR, Knez A, Ohnesorge B, Schoepf UJ, Reiser MF. Imaging of noncalcified coronary plaques using helical CT with retrospective ECG gating. AJR Am. J. Roentgenol.175, 423–424 (2000).
  • Leber AW, Knez A, von Ziegler F et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J. Am. Coll. Cardiol.46, 147–154 (2005).
  • Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Engl. J. Med.336, 1276–1282 (1997).
  • Leber AW, Knez A, White CW et al. Composition of coronary atherosclerotic plaques in patients with acute myocardial infarction and stable angina pectoris determined by contrast-enhanced multislice computed tomography. Am. J. Cardiol.91, 714–718 (2003).
  • Libby P. Molecular bases of the acute coronary syndromes. Circulation91, 2844–2850 (1995).
  • Cheruvu PK, Finn AV, Gardner C et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J. Am. Coll. Cardiol.50, 940–949 (2007).
  • Kashiwagi M, Tanaka A, Kitabata H et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc. Imaging2, 1412–1419 (2009).
  • Kashiwagi M, Tanaka A, Kitabata H et al. Relationship between coronary arterial remodeling, fibrous cap thickness and high-sensitivity C-reactive protein levels in patients with acute coronary syndrome. Circ. J.73, 1291–1295 (2009).
  • Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation103, 604–616 (2001).
  • Yabushita H, Bouma BE, Houser SL et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation106, 1640–1645 (2002).
  • Fujii K, Kawasaki D, Masutani M et al. OCT assessment of thin-cap fibroatheroma distribution in native coronary arteries. JACC Cardiovasc. Imaging3, 168–175 (2010).
  • Achenbach S, Ropers D, Hoffmann U et al. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J. Am. Coll. Cardiol.43, 842–847 (2004).
  • Leber AW, Becker A, Knez A et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J. Am. Coll. Cardiol.47, 672–677 (2006).
  • Sun J, Zhang Z, Lu B et al. Identification and quantification of coronary atherosclerotic plaques: a comparison of 64-MDCT and intravascular ultrasound. AJR Am. J. Roentgenol.190, 748–754 (2008).
  • Becker CR, Nikolaou K, Muders M et al.Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. Eur. Radiol.13, 2094–2098 (2003).
  • Leber AW, Knez A, Becker A et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J. Am. Coll. Cardiol.43, 1241–1247 (2004).
  • Moselewski F, Ropers D, Pohle K et al. Comparison of measurement of cross-sectional coronary atherosclerotic plaque and vessel areas by 16-slice multidetector computed tomography versus intravascular ultrasound. Am. J. Cardiol.94, 1294–1297 (2004).
  • Chopard R, Boussel L, Motreff P et al. How reliable are 40 MHz IVUS and 64-slice MDCT in characterizing coronary plaque composition? An ex vivo study with histopathological comparison. Int. J. Cardiovasc. Imaging26, 373–383 (2010).
  • Galonska M, Ducke F, Kertesz-Zborilova T, Meyer R, Guski H, Knollmann FD. Characterization of atherosclerotic plaques in human coronary arteries with 16-slice multidetector row computed tomography by analysis of attenuation profiles. Acad. Radiol.15, 222–230 (2008).
  • Schroeder S, Kuettner A, Leitritz M et al. Reliability of differentiating human coronary plaque morphology using contrast-enhanced multislice spiral computed tomography: a comparison with histology. J. Comput. Assist. Tomogr.28, 449–454 (2004).
  • Matter CM, Stuber M, Nahrendorf M. Imaging of the unstable plaque: how far have we got? Eur. Heart J.30, 2566–2574 (2009).
  • Chao SP, Law WY, Kuo CJ et al. The diagnostic accuracy of 256-row computed tomographic angiography compared with invasive coronary angiography in patients with suspected coronary artery disease. Eur. Heart J. DOI: 10.1093/eurheartj/ehq072 (2010) (Epub ahead of print).
  • Korosoglou G, Mueller D, Lehrke S et al. Quantitative assessment of stenosis severity and atherosclerotic plaque composition using 256-slice computed tomography. Eur. Radiol.20, 1841–1850 (2010).
  • Gupta NC, Esterbrooks DJ, Hilleman DE, Mohiuddin SM. Comparison of adenosine and exercise thallium-201 single-photon emission computed tomography (SPECT) myocardial perfusion imaging. The GE SPECT Multicenter Adenosine Study Group. J. Am. Coll. Cardiol.19, 248–257 (1992).
  • Miller DD, Verani MS. Current status of myocardial perfusion imaging after percutaneous transluminal coronary angioplasty. J. Am. Coll. Cardiol.24, 260–266 (1994).
  • Nguyen T, Heo J, Ogilby JD, Iskandrian AS. Single photon emission computed tomography with thallium-201 during adenosine-induced coronary hyperemia: correlation with coronary arteriography, exercise thallium imaging and two-dimensional echocardiography. J. Am. Coll. Cardiol.16, 1375–1383 (1990).
  • San Roman JA, Vilacosta I, Castillo JA et al. Selection of the optimal stress test for the diagnosis of coronary artery disease. Heart80, 370–376 (1998).
  • Gaemperli O, Schepis T, Valenta I et al. Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT. Radiology248, 414–423 (2008).
  • Hacker M, Jakobs T, Hack N et al. Sixty-four slice spiral CT angiography does not predict the functional relevance of coronary artery stenoses in patients with stable angina. Eur. J. Nucl. Med. Mol. Imaging34, 4–10 (2007).
  • Nicol ED, Stirrup J, Reyes E et al. Sixty-four-slice computed tomography coronary angiography compared with myocardial perfusion scintigraphy for the diagnosis of functionally significant coronary stenoses in patients with a low to intermediate likelihood of coronary artery disease. J. Nucl. Cardiol.15, 311–318 (2008).
  • Mahnken AH, Bruners P, Katoh M, Wildberger JE, Gunther RW, Buecker A. Dynamic multi-section CT imaging in acute myocardial infarction: preliminary animal experience. Eur. Radiol.16, 746–752 (2006).
  • Wolfkiel CJ, Ferguson JL, Chomka EV et al. Measurement of myocardial blood flow by ultrafast computed tomography. Circulation76, 1262–1273 (1987).
  • Nikolaou K, Sanz J, Poon M et al. Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results. Eur. Radiol.15, 864–871 (2005).
  • Choi SI, George RT, Schuleri KH, Chun EJ, Lima JA, Lardo AC. Recent developments in wide-detector cardiac computed tomography. Int. J. Cardiovasc. Imaging25(Suppl. 1), 23–29 (2009).
  • Ruzsics B, Chiaramida SA, Schoepf UJ. Images in cardiology: dual-energy computed tomography imaging of myocardial infarction. Heart95, 180 (2009).
  • Ruzsics B, Schwarz F, Schoepf UJ et al. Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am. J. Cardiol.104, 318–326 (2009).
  • Schwarz F, Ruzsics B, Schoepf UJ et al. Dual-energy CT of the heart – principles and protocols. Eur. J. Radiol.68, 423–433 (2008).
  • Thilo C, Schoepf UJ, Gordon L, Chiaramida S, Serguson J, Costello P. Integrated assessment of coronary anatomy and myocardial perfusion using a retractable SPECT camera combined with 64-slice CT: initial experience. Eur. Radiol.19, 845–856 (2009).
  • Bastarrika G, Ramos-Duran L, Rosenblum MA, Kang DK, Rowe GW, Schoepf UJ. Adenosine-stress dynamic myocardial CT perfusion imaging: initial clinical experience. Invest. Radiol.45, 306–313 (2010).
  • Bastarrika G, Ramos-Duran L, Schoepf UJ et al. Adenosine-stress dynamic myocardial volume perfusion imaging with second generation dual-source computed tomography: concepts and first experiences. J. Cardiovasc. Comput. Tomogr.4, 127–135 (2010).
  • Rogers IS, Cury RC, Blankstein R et al. Comparison of postprocessing techniques for the detection of perfusion defects by cardiac computed tomography in patients presenting with acute ST-segment elevation myocardial infarction. J. Cardiovasc. Comput. Tomogr.4, 258–266 (2010).
  • Baer FM, Theissen P, Schneider CA et al. MRI assessment of myocardial viability: comparison with other imaging techniques. Rays24, 96–108 (1999).
  • Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur. J. Nucl. Med. Mol. Imaging29, 1257–1266 (2002).
  • Wijns W, Vatner SF, Camici PG. Hibernating myocardium. N. Engl. J. Med.339, 173–181 (1998).
  • Kim RJ, Fieno DS, Parrish TB et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation100, 1992–2002 (1999).
  • Lin D, Kramer CM. Late gadolinium-enhanced cardiac magnetic resonance. Curr. Cardiol. Rep.10, 72–78 (2008).
  • Kim RJ, Wu E, Rafael A et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med.343, 1445–1453 (2000).
  • Kwong RY, Chan AK, Brown KA et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation113, 2733–2743 (2006).
  • Yan AT, Shayne AJ, Brown KA et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation114, 32–39 (2006).
  • Klein C, Nekolla SG, Bengel FM et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation105, 162–167 (2002).
  • Pennell DJ, Sechtem UP, Higgins CB et al. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. J. Cardiovasc. Magn. Reson.6, 727–765 (2004).
  • Gerber BL, Belge B, Legros GJ et al. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation113, 823–833 (2006).
  • Lardo AC, Cordeiro MA, Silva C et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation113, 394–404 (2006).
  • Baks T, Cademartiri F, Moelker AD et al. Multislice computed tomography and magnetic resonance imaging for the assessment of reperfused acute myocardial infarction. J. Am. Coll. Cardiol.48, 144–152 (2006).
  • Brodoefel H, Klumpp B, Reimann A et al. Sixty-four-MSCT in the characterization of porcine acute and subacute myocardial infarction: determination of transmurality in comparison to magnetic resonance imaging and histopathology. Eur. J. Radiol.62, 235–246 (2007).
  • Mahnken AH, Bruners P, Kinzel S et al. Late-phase MSCT in the different stages of myocardial infarction: animal experiments. Eur. Radiol.17, 2310–2317 (2007).
  • Nieman K, Shapiro MD, Ferencik M et al. Reperfused myocardial infarction: contrast-enhanced 64-section CT in comparison to MR imaging. Radiology247, 49–56 (2008).
  • Sanz J, Weeks D, Nikolaou K et al. Detection of healed myocardial infarction with multidetector-row computed tomography and comparison with cardiac magnetic resonance delayed hyperenhancement. Am. J. Cardiol.98, 149–155 (2006).
  • Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF. Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology231, 169–174 (2004).
  • Mahnken AH, Koos R, Katoh M et al. Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J. Am. Coll. Cardiol.45, 2042–2047 (2005).
  • Kuettner A, Beck T, Drosch T et al. Image quality and diagnostic accuracy of non-invasive coronary imaging with 16 detector slice spiral computed tomography with 188 ms temporal resolution. Heart91, 938–941 (2005).
  • Mollet NR, Cademartiri F, Krestin GP et al. Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J. Am. Coll. Cardiol.45, 128–132 (2005).
  • Hoffmann MH, Shi H, Schmitz BL et al. Noninvasive coronary angiography with multislice computed tomography. JAMA293, 2471–2478 (2005).
  • Achenbach S, Ropers D, Pohle FK et al. Detection of coronary artery stenoses using multi-detector CT with 16 × 0.75 collimation and 375 ms rotation. Eur. Heart J.26, 1978–1986 (2005).
  • Nikolaou K, Knez A, Rist C et al. Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am. J. Roentgenol.187, 111–117 (2006).
  • Chao SP, Law WY, Kuo CJ et al. The diagnostic accuracy of 256-row computed tomographic angiography compared with invasive coronary angiography in patients with suspected coronary artery disease. Eur. Heart J.31, 1916–1923 (2010).
  • Dewey M, Zimmermann E, Deissenrieder F et al. Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation120, 867–875 (2009).
  • de Graaf FR, Schuijf JD, van Velzen JE et al. Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography in the non-invasive evaluation of significant coronary artery disease. Eur. Heart J.31, 1908–1915 (2010).
  • Johnson TR, Nikolaou K, Busch S et al. Diagnostic accuracy of dual-source computed tomography in the diagnosis of coronary artery disease. Invest. Radiol.42, 684–691 (2007).
  • Brodoefel H, Burgstahler C, Tsiflikas I et al. Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology247, 346–355 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.