98
Views
15
CrossRef citations to date
0
Altmetric
Theme: Cardiac Imaging - Review

Carotid MRI: a tool for monitoring individual response to cardiovascular therapy?

&
Pages 63-80 | Published online: 10 Jan 2014

References

  • D’Agostino RB, Wolf PA, Belanger AJ, Kannel WB. Stroke risk profile: adjustment for antihypertensive medication. The Framingham Study. Stroke25(1), 40–43 (1994).
  • Sarti C, Rastenyte D, Cepaitis Z, Tuomilehto J. International trends in mortality from stroke, 1968 to 1994. Stroke31(7), 1588–1601 (2000).
  • Bonita R, Stewart A, Beaglehole R. International trends in stroke mortality: 1970–1985. Stroke21(7), 989–992 (1990).
  • Thom TJ. Stroke mortality trends. An international perspective. Ann. Epidemiol.3(5), 509–518 (1993).
  • Amarenco P, Labreuche J. Lipid management in the prevention of stroke: review and updated meta-analysis of statins for stroke prevention. Lancet Neurol.8(5), 453–463 (2009).
  • Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet371(9624), 1612–1623 (2008).
  • Kurl S, Sivenius J, Makikallio TH, Rauramaa R, Laukkanen JA. Exercise workload, cardiovascular risk factor evaluation and the risk of stroke in middle-aged men. J. Intern. Med.265(2), 229–237 (2009).
  • O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N. Engl. J. Med.340(1), 14–22 (1999).
  • Prati P, Tosetto A, Vanuzzo D et al. Carotid intima media thickness and plaques can predict the occurrence of ischemic cerebrovascular events. Stroke39(9), 2470–2476 (2008).
  • Turnbull F. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet362(9395), 1527–1535 (2003).
  • O’Regan C, Wu P, Arora P, Perri D, Mills EJ. Statin therapy in stroke prevention: a meta-analysis involving 121,000 patients. Am. J. Med.121(1), 24–33 (2008).
  • Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet375(9718), 906–915 (2010).
  • Autret A, Pourcelot L, Saudeau D, Marchal C, Bertrand P, de Boisvilliers S. Stroke risk in patients with carotid stenosis. Lancet1(8538), 888–890 (1987).
  • Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation74(6), 1399–1406 (1986).
  • Landry A, Spence JD, Fenster A. Measurement of carotid plaque volume by 3-dimensional ultrasound. Stroke35(4), 864–869 (2004).
  • Saba L, Sanfilippo R, Montisci R, Mallarini G. Carotid artery wall thickness: comparison between sonography and multi-detector row CT angiography. Neuroradiology52(2), 75–82 (2010).
  • Toussaint JF, Southern JF, Fuster V, Kantor HL. T2-weighted contrast for NMR characterization of human atherosclerosis. Arterioscler. Thromb. Vasc. Biol.15(10), 1533–1542 (1995).
  • U-King-Im JM, Young V, Gillard JH. Carotid-artery imaging in the diagnosis and management of patients at risk of stroke. Lancet Neurol.8(6), 569–580 (2009).
  • Villines TC, Taylor AJ. Non-invasive atherosclerosis imaging: use to assess response to novel or combination lipid therapies. Curr. Drug Targ.5(6), 557–564 (2005).
  • Moore WS, Barnett HJ, Beebe HG et al. Guidelines for carotid endarterectomy. A multidisciplinary consensus statement from the Ad Hoc Committee, American Heart Association. Circulation91(2), 566–579 (1995).
  • SVN Task Force for Clinical Practice Guideline Members. 2009 clinical practice guideline for patients undergoing carotid endarterectomy (CEA). J. Vasc. Nurs.28(1), 21–46 (2010).
  • Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic Resonance Imaging: Physical Principles and Sequence Design. John Wiley & Sons, Inc, NY, USA (1999).
  • Dumoulin CL, Hart HR Jr. Magnetic resonance angiography. Radiology161(3), 717–720 (1986).
  • Hausmann R, Lewin JS, Laub G. Phase-contrast MR angiography with reduced acquisition time: new concepts in sequence design. J. Magn. Reson. Imaging1(4), 415–422 (1991).
  • Lin W, Abendschein DR, Haacke EM. Contrast-enhanced magnetic resonance angiography of carotid arterial wall in pigs. J. Magn. Reson. Imaging7(1), 183–190 (1997).
  • Edelman RR, Mattle HP, Wallner B et al. Extracranial carotid arteries: evaluation with ‘black blood’ MR angiography. Radiology,177(1), 45–50 (1990).
  • Simonetti OP, Finn JP, White RD, Laub G, Henry DA. ‘Black blood’ T2-weighted inversion-recovery MR imaging of the heart. Radiology199(1), 49–57 (1996).
  • Yarnykh VL, Yuan C. Multislice double inversion-recovery black-blood imaging with simultaneous slice reinversion. J. Magn. Reson. Imaging17(4), 478–483 (2003).
  • Koktzoglou I, Chung YC, Carroll TJ, Simonetti OP, Morasch MD, Li D. Three-dimensional black-blood MR imaging of carotid arteries with segmented steady-state free precession: initial experience. Radiology243(1), 220–228 (2007).
  • Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C. Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn. Reson. Med.58(5), 973–981 (2007).
  • Yarnykh VL, Yuan C. T1-insensitive flow suppression using quadruple inversion-recovery. Magn. Reson. Med.48(5), 899–905 (2002).
  • Moody AR, Murphy RE, Morgan PS et al. Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation107(24), 3047–3052 (2003).
  • Zhu DC, Ferguson MS, DeMarco JK. An optimized 3D inversion recovery prepared fast spoiled gradient recalled sequence for carotid plaque hemorrhage imaging at 3.0 T. Magn. Reson. Imaging26(10), 1360–1366 (2008).
  • Trivedi RA, JM UK-I, Graves MJ et al.In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke35(7), 1631–1635 (2004).
  • Trivedi RA, Mallawarachi C, U-King-Im J et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler. Thromb. Vasc. Biol.26(7), 1601–1606 (2006).
  • Kooi ME, Cappendijk VC, Cleutjens KB et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation107(19), 2453–2458 (2003).
  • Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology241(2), 459–468 (2006).
  • Calcagno C, Cornily JC, Hyafil F et al. Detection of neovessels in atherosclerotic plaques of rabbits using dynamic contrast enhanced MRI and 18F-FDG PET. Arterioscler. Thromb. Vasc. Biol.28(7), 1311–1317 (2008).
  • Yuan C, Kerwin WS, Yarnykh VL et al. MRI of atherosclerosis in clinical trials. NMR Biomed.19(6), 636–654 (2006).
  • Saam T, Hatsukami TS, Takaya N et al. The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology244(1), 64–77 (2007).
  • Dong L, Kerwin WS, Ferguson MS et al. Cardiovascular magnetic resonance in carotid atherosclerotic disease. J. Cardiovasc. Magn. Reson.11, 53 (2009).
  • DeMarco JK, Huston J, Nash AK. Extracranial carotid MR imaging at 3T. Magn. Reson. Imaging Clin. N. Am.14(1), 109–121 (2006).
  • Watanabe Y, Nagayama M. MR plaque imaging of the carotid artery. Neuroradiology52(4), 253–274 (2010).
  • Kerwin WS, Canton G. Advanced techniques for MRI of atherosclerotic plaque. Top. Magn. Reson. Imaging20(4), 217–225 (2009).
  • Balu N, Wang J, Dong L, Baluyot F, Chen H, Yuan C. Current techniques for MR imaging of atherosclerosis. Top. Magn. Reson. Imaging20(4), 203–215 (2009).
  • Leiner T, Gerretsen S, Botnar R et al. Magnetic resonance imaging of atherosclerosis. Eur. Radiol.15(6), 1087–1099 (2005).
  • Tang TY, Muller KH, Graves MJ et al. Iron oxide particles for atheroma imaging. Arterioscler. Thromb. Vasc. Biol.29(7), 1001–1008 (2009).
  • Wang J, Balu N, Canton G, Yuan C. Imaging biomarkers of cardiovascular disease. J. Magn. Reson. Imaging32(3), 502–515 (2010).
  • Underhill HR, Yarnykh VL, Hatsukami TS et al. Carotid plaque morphology and composition: initial comparison between 1.5- and 3.0-T magnetic field strengths. Radiology248(2), 550–560 (2008).
  • Hayes CE, Mathis CM, Yuan C. Surface coil phased arrays for high-resolution imaging of the carotid arteries. J. Magn. Reson. Imaging,6(1), 109–112 (1996).
  • Balu N, Yarnykh VL, Scholnick J, Chu B, Yuan C, Hayes C. Improvements in carotid plaque imaging using a new eight-element phased array coil at 3T. J. Magn. Reson. Imaging30(5), 1209–1214 (2009).
  • Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation94(5), 932–938 (1996).
  • Yuan C, Mitsumori LM, Ferguson MS et al.In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation104(17), 2051–2056 (2001).
  • Saam T, Ferguson MS, Yarnykh VL et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler. Thromb. Vasc. Biol.25(1), 234–239 (2005).
  • Cai J, Hatsukami TS, Ferguson MS et al.In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation112(22), 3437–3444 (2005).
  • Trivedi RA, U-King-Im J, Graves MJ et al. Multi-sequence in vivo MRI can quantify fibrous cap and lipid core components in human carotid atherosclerotic plaques. Eur. J. Vasc. Endovasc. Surg.28(2), 207–213 (2004).
  • Puppini G, Furlan F, Cirota N et al. Characterisation of carotid atherosclerotic plaque: comparison between magnetic resonance imaging and histology. Radiol. Med.111(7), 921–930 (2006).
  • Liu F, Xu D, Ferguson MS et al. Automated in vivo segmentation of carotid plaque MRI with morphology-enhanced probability maps. Magn. Reson. Med.55(3), 659–668 (2006).
  • Cappendijk VC, Kessels AG, Heeneman S et al. Comparison of lipid-rich necrotic core size in symptomatic and asymptomatic carotid atherosclerotic plaque: initial results. J. Magn. Reson. Imaging27(6), 1356–1361 (2008).
  • Chu B, Kampschulte A, Ferguson MS et al. Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke35(5), 1079–1084 (2004).
  • Kampschulte A, Ferguson MS, Kerwin WS et al. Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging. Circulation110(20), 3239–3244 (2004).
  • Bitar R, Moody AR, Leung G et al.In vivo 3D high-spatial-resolution MR imaging of intraplaque hemorrhage. Radiology249(1), 259–267 (2008).
  • Ota H, Yarnykh VL, Ferguson MS et al. Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: comparison of the diagnostic performance of three T1-weighted sequences. Radiology254(2), 551–563 (2010).
  • Wang J, Ferguson MS, Balu N, Yuan C, Hatsukami TS, Bornert P. Improved carotid intraplaque hemorrhage imaging using a slab-selective phase-sensitive inversion-recovery (SPI) sequence. Magn. Reson. Med.64(5), 1332–1340 (2010).
  • Hatsukami TS, Ross R, Polissar NL, Yuan C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation102(9), 959–964 (2000).
  • Mitsumori LM, Hatsukami TS, Ferguson MS, Kerwin WS, Cai J, Yuan C. In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J. Magn. Reson. Imaging17(4), 410–420 (2003).
  • Yu W, Underhill HR, Ferguson MS et al. The added value of longitudinal black-blood cardiovascular magnetic resonance angiography in the cross sectional identification of carotid atherosclerotic ulceration. J. Cardiovasc. Magn. Reson.11(1), 31 (2009).
  • Kerwin W, Hooker A, Spilker M et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation107(6), 851–856 (2003).
  • Chu B, Ferguson MS, Chen H et al. Magnetic resonance imaging features of the disruption-prone and the disrupted carotid plaque. JACC Cardiovasc. Imaging2(7), 883–896 (2009).
  • Yuan C, Kerwin WS, Ferguson MS et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J. Magn. Reson. Imaging15(1), 62–67 (2002).
  • Kwee RM, van Engelshoven JM, Mess WH et al. Reproducibility of fibrous cap status assessment of carotid artery plaques by contrast-enhanced MRI. Stroke40(9), 3017–3021 (2009).
  • Yuan C, Zhang SX, Polissar NL et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation105(2), 181–185 (2002).
  • Murphy RE, Moody AR, Morgan PS et al. Prevalence of complicated carotid atheroma as detected by magnetic resonance direct thrombus imaging in patients with suspected carotid artery stenosis and previous acute cerebral ischemia. Circulation107(24), 3053–3058 (2003).
  • Saam T, Cai J, Ma L et al. Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features with in vivo MR imaging. Radiology240(2), 464–472 (2006).
  • Demarco JK, Ota H, Underhill HR et al. MR carotid plaque imaging and contrast-enhanced MR angiography identifies lesions associated with recent ipsilateral thromboembolic symptoms: an in vivo study at 3T. AJNR Am. J. Neuroradiol.31(8), 1395–1402 (2010).
  • Kwee RM, van Oostenbrugge RJ, Prins MH et al. Symptomatic patients with mild and moderate carotid stenosis: plaque features at MRI and association with cardiovascular risk factors and statin use. Stroke41(7), 1389–1393 (2010).
  • Takaya N, Yuan C, Chu B et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI – initial results. Stroke37(3), 818–823 (2006).
  • Altaf N, Daniels L, Morgan PS et al. Detection of intraplaque hemorrhage by magnetic resonance imaging in symptomatic patients with mild to moderate carotid stenosis predicts recurrent neurological events. J. Vasc. Surg.47(2), 337–342 (2008).
  • Singh N, Moody AR, Gladstone DJ et al. Moderate carotid artery stenosis: MR imaging-depicted intraplaque hemorrhage predicts risk of cerebrovascular ischemic events in asymptomatic men. Radiology252(2), 502–508 (2009).
  • MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. European Carotid Surgery Trialists’ Collaborative Group. Lancet337(8752), 1235–1243 (1991).
  • Endarterectomy for moderate symptomatic carotid stenosis: interim results from the MRC European Carotid Surgery Trial. Lancet347(9015), 1591–1593 (1996).
  • Barnett HJ, Taylor DW, Eliasziw M et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N. Engl. J. Med.339(20), 1415–1425 (1998).
  • Endarterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA273(18), 1421–1428 (1995).
  • Halliday A, Mansfield A, Marro J et al. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet363(9420), 1491–1502 (2004).
  • Willinek WA. Looking beyond the lumen to predict cerebrovascular events: ‘the road less travelled by’. Stroke37(3), 759–760 (2006).
  • Saam T, Underhill HR, Chu B et al. Prevalence of American Heart Association type VI carotid atherosclerotic lesions identified by magnetic resonance imaging for different levels of stenosis as measured by duplex ultrasound. J. Am. Coll. Cardiol.51(10), 1014–1021 (2008).
  • Dong L, Underhill HR, Yu W et al. Geometric and compositional appearance of atheroma in an angiographically normal carotid artery in patients with atherosclerosis. AJNR Am. J. Neuroradiol.31(2), 311–316 (2010).
  • Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J. Am. Coll Cardiol.47(Suppl. 8), C13–C18 (2006).
  • Corti R, Fayad ZA, Fuster V et al. Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation104(3), 249–252 (2001).
  • Corti R, Fuster V, Fayad ZA et al. Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years’ follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation106(23), 2884–2887 (2002).
  • Corti R, Fuster V, Fayad ZA et al. Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: a prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. J. Am. Coll. Cardiol.46(1), 106–112 (2005).
  • Underhill HR, Yuan C, Zhao XQ et al. Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial. Am. Heart J.155(3), 584 e581–e588 (2008).
  • Lee JM, Wiesmann F, Shirodaria C et al. Early changes in arterial structure and function following statin initiation: quantification by magnetic resonance imaging. Atherosclerosis197(2), 951–958 (2008).
  • Tang TY, Howarth SP, Miller SR et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J. Am. Coll. Cardiol.53(22), 2039–2050 (2009).
  • Lee JM, Robson MD, Yu LM et al. Effects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. J. Am. Coll. Cardiol.54(19), 1787–1794 (2009).
  • Varghese A, Yee MS, Chan CF et al. Effect of rosiglitazone on progression of atherosclerosis: insights using 3D carotid cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson.11, 24 (2009).
  • Zhao XQ, Phan BA, Chu B et al. Testing the hypothesis of atherosclerotic plaque lipid depletion during lipid therapy by magnetic resonance imaging: study design of Carotid Plaque Composition Study. Am. Heart J.154(2), 239–246 (2007).
  • Miyauchi K, Takaya N, Hirose T et al. Rationale and design of the carotid plaque in human for all evaluations with aggressive rosuvastatin therapy (CHALLENGER trial): evaluation by magnetic resonance imaging. Circ. J.73(1), 111–115 (2009).
  • Duivenvoorden R, de Groot E, Stroes ES, Kastelein JJ. Surrogate markers in clinical trials – challenges and opportunities. Atherosclerosis206(1), 8–16 (2009).
  • Makris GC, Lavida A, Nicolaides AN, Geroulakos G. The effect of statins on carotid plaque morphology: a LDL-associated action or one more pleiotropic effect of statins? Atherosclerosis213(1), 8–20 (2010).
  • Kang S, Wu Y, Li X. Effects of statin therapy on the progression of carotid atherosclerosis: a systematic review and meta-analysis. Atherosclerosis177(2), 433–442 (2004).
  • Amarenco P, Labreuche J, Lavallee P, Touboul PJ. Statins in stroke prevention and carotid atherosclerosis: systematic review and up-to-date meta-analysis. Stroke35(12), 2902–2909 (2004).
  • Dong L, Kerwin W, Chun H et al. Effect of intensive lipid therapy on atherosclerotic plaque inflammation: evaluation of using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in carotid disease. Circulation120(18 Suppl. II), 1047–1048 (2009).
  • Zhao XQ, Dong L, Hatsukami TS et al. Magnetic resonance imaging of the plaque lipid depletion during lipid therapy: a prospective assessment of efficacy and time-course. Presented at: ACC 2009. Orlando, FL, USA, 28–31 March 2009.
  • Adams GJ, Greene J, Vick GW 3rd et al. Tracking regression and progression of atherosclerosis in human carotid arteries using high-resolution magnetic resonance imaging. Magn. Reson. Imaging22(9), 1249–1258 (2004).
  • Takaya N, Yuan C, Chu B et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation111(21), 2768–2775 (2005).
  • Saam T, Yuan C, Chu B et al. Predictors of carotid atherosclerotic plaque progression as measured by noninvasive magnetic resonance imaging. Atherosclerosis194(2), e34–e42 (2007).
  • Boussel L, Arora S, Rapp J et al. Atherosclerotic plaque progression in carotid arteries: monitoring with high-spatial-resolution MR imaging – multicenter trial. Radiology252(3), 789–796 (2009).
  • Underhill HR, Yuan C, Yarnykh VL et al. Arterial remodeling in subclinical carotid artery disease. JACC Cardiovasc. Imaging2(12), 1381–1389 (2009).
  • Underhill HR, Yuan C, Yarnykh VL et al. Predictors of surface disruption with MR imaging in asymptomatic carotid artery stenosis. AJNR Am. J. Neuroradiol.31(3), 487–493 (2010).
  • Hayashi K, Mani V, Nemade A et al. Variations in atherosclerosis and remodeling patterns in aorta and carotids. J. Cardiovasc. Magn. Reson.12, 10 (2010).
  • Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med.316(22), 1371–1375 (1987).
  • Ota H, Yu W, Underhill HR et al. Hemorrhage and large lipid-rich necrotic cores are independently associated with thin or ruptured fibrous caps: an in vivo 3T MRI study. Arterioscler. Thromb. Vasc. Biol.29(10), 1696–1701 (2009).
  • Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the unstable plaque. Prog. Cardiovasc. Dis.44(5), 349–356 (2002).
  • Saam T, Hatsukami TS, Yarnykh VL et al. Reader and platform reproducibility for quantitative assessment of carotid atherosclerotic plaque using 1.5T Siemens, Philips, and General Electric scanners. J. Magn. Reson. Imaging26(2), 344–352 (2007).
  • Takaya N, Cai J, Ferguson MS et al. Intra- and interreader reproducibility of magnetic resonance imaging for quantifying the lipid-rich necrotic core is improved with gadolinium contrast enhancement. J. Magn. Reson. Imaging24(1), 203–210 (2006).
  • Touze E, Toussaint JF, Coste J et al. Reproducibility of high-resolution MRI for the identification and the quantification of carotid atherosclerotic plaque components: consequences for prognosis studies and therapeutic trials. Stroke38(6), 1812–1819 (2007).
  • Syed MA, Oshinski JN, Kitchen C, Ali A, Charnigo RJ, Quyyumi AA. Variability of carotid artery measurements on 3-Tesla MRI and its impact on sample size calculation for clinical research. Int. J.Cardiovasc. Imaging25(6), 581–589 (2009).
  • Saam T, Kerwin WS, Chu B et al. Sample size calculation for clinical trials using magnetic resonance imaging for the quantitative assessment of carotid atherosclerosis. J. Cardiovasc. Magn. Reson.7(5), 799–808 (2005).
  • Kang X, Polissar NL, Han C, Lin E, Yuan C. Analysis of the measurement precision of arterial lumen and wall areas using high-resolution MRI. Magn. Reson. Med.44(6), 968–972 (2000).
  • Li F, Yarnykh VL, Hatsukami TS et al. Scan–rescan reproducibility of carotid atherosclerotic plaque morphology and tissue composition measurements using multicontrast MRI at 3T. J. Magn. Reson. Imaging31(1), 168–176 (2010).
  • Nissen SE, Tuzcu EM, Schoenhagen P et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA291(9), 1071–1080 (2004).
  • Bots ML, Evans GW, Riley WA, Grobbee DE. Carotid intima–media thickness measurements in intervention studies: design options, progression rates, and sample size considerations: a point of view. Stroke34(12), 2985–2994 (2003).
  • Gould AL, Koglin J, Bain RP et al. Effects of sources of variability on sample sizes required for RCTs, applied to trials of lipid-altering therapies on carotid artery intima-media thickness. Clin. Trials6(4), 305–319 (2009).
  • Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol. Dial. Transplant.21(4), 1104–1108 (2006).
  • Rydahl C, Thomsen HS, Marckmann P. High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Invest. Radiol.43(2), 141–144 (2008).
  • Wang J, Yarnykh VL, Yuan C. Enhanced image quality in black-blood MRI using the improved motion-sensitized driven-equilibrium (iMSDE) sequence. J. Magn. Reson. Imaging31(5), 1256–1263 (2010).
  • Balu N, Yarnykh VL, Chu B, Wang J, Hatsukami T, Yuan C. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI. Magn. Reson. Med. DOI: 10.1002/mrm.22642 (2010) (Epub ahead of print).
  • Balu N, Kerwin WS, Chu B, Liu F, Yuan C. Serial MRI of carotid plaque burden: influence of subject repositioning on measurement precision. Magn. Reson. Med.57(3), 592–599 (2007).
  • Homburg PJ, Rozie S, van Gils MJ et al. Atherosclerotic plaque ulceration in the symptomatic internal carotid artery is associated with nonlacunar ischemic stroke. Stroke41(6), 1151–1156 (2010).
  • Steinman DA, Thomas JB, Ladak HM, Milner JS, Rutt BK, Spence JD. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med.47(1), 149–159 (2002).
  • Li ZY, Howarth SP, Tang T et al. Structural analysis and magnetic resonance imaging predict plaque vulnerability: a study comparing symptomatic and asymptomatic individuals. J. Vasc. Surg.45(4), 768–775 (2007).
  • Tang D, Yang C, Zheng J et al. 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann. Biomed. Eng.32(7), 947–960 (2004).
  • Teng Z, Canton G, Yuan C et al. 3D critical plaque wall stress is a better predictor of carotid plaque rupture sites than flow shear stress: an in vivo MRI-based 3D FSI study. J. Biomech. Eng.132(3), 031007 (2010).
  • Howard G, Howard VJ, Katholi C, Oli MK, Huston S. Decline in US stroke mortality: an analysis of temporal patterns by sex, race, and geographic region. Stroke32(10), 2213–2220 (2001).
  • Wasserman BA, Sharrett AR, Lai S et al. Risk factor associations with the presence of a lipid core in carotid plaque of asymptomatic individuals using high-resolution MRI: the multi-ethnic study of atherosclerosis (MESA). Stroke39(2), 329–335 (2008).
  • Underhill HR, Hatsukami TS, Cai J et al. A noninvasive imaging approach to assess plaque severity: the carotid atherosclerosis score. AJNR Am. J. Neuroradiol.31(6), 1068–1075 (2010).
  • American Heart Association. Heart Disease & Stroke Statistics – 2009 Update. American Heart Association, TX, USA (2009).
  • Underhill HR, Hatsukami TS, Fayad ZA, Fuster V, Yuan C. MRI of carotid atherosclerosis: clinical implications and future directions. Nat. Rev. Cardiol.7(3), 165–173 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.