436
Views
126
CrossRef citations to date
0
Altmetric
Review

Shear stress and plaque development

, , , , , , , , & show all
Pages 545-556 | Published online: 10 Jan 2014

References

  • Ross R. Atherosclerosis – an inflammatory disease. N. Engl. J. Med.340, 11–26 (1999).
  • Van der Laan P, Reardon C, Getz G. Site specificity of atherosclerosis site-selective responses to atherosclerotic modulators. Arterioscler. Thromb. Vasc. Biol.12–22 (2004).
  • Davies P. Flow-mediated endothelial mechanotransduction. Am. Physiol. Soc.51–60 (1995).
  • Nichols W, O’Rourke M. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (5th Edition). Hodder Arnold Publications, London, UK (2005).
  • Slager CJ, Wentzel JJ, Gijsen FJH et al. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat. Clin. Pract. Cardiovasc. Med.2, 401–407 (2005).
  • Zarins C, Giddens D, Bharadvaj B, Sottiurai V, Mabon R, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res.53, 502–514 (1983).
  • Fry DL. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ. Res.22, 165–197 (1968).
  • Fry DL. Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog. Circ. Res.24, 93–108 (1969).
  • Caro C, Fitz-Gerald J, Schroter R. Arterial wall shear and distribution of early atheroma in man. Nature223, 115–160 (1969).
  • Ganong W. Review of Medical Physiology. (23rd Edition). McGraw-Hill, NY, USA (2009).
  • Ku D, Giddens D, Zarins C, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thromb. Vasc. Biol.5, 293–302 (1985).
  • Stone PH, Coskun AU, Kinlay S et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation108, 43–44 (2003).
  • Levesque MJ, Nerem RM. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng.107, 341–347 (1985).
  • Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng.103, 177–185 (1981).
  • Levesque MJ, Liepsch D, Moravec S, Nerem RM. Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arterioscler. Thromb. Vasc. Biol.6, 22–29 (1986).
  • Davies PF, Remuzzi A, Gordon EJ, Dewey CF, Gimbrone MA. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl Acad. Sci.83, 2114–2117 (1986).
  • Lin K, Hsu PP, Chen BP et al. Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc. Natl Acad. Sci. USA97(17), 9385–9389 (2000).
  • Chien S. Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog. Biophys. Mol. Biol.83, 13–51 (2003).
  • Van der Heiden K, Hierck B, Krams R et al. Endothelial primary cilia in areas of disturbed flow are at the base of atherosclerosis. Atherosclerosis196, 542–550 (2008).
  • Li Y-SJ, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biochem.38, 1949–1971 (2005).
  • Wang Y, Miao H, Li S et al. Interplay between integrins and FLK-1 in shear stress-induced signaling. Am. J. Physiol. Cell. Physiol.283, C1540–C1547 (2002).
  • Davies PF, Barbee KA, Volin MV et al. Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Ann. Rev. Physiol.59, 527–549 (1997).
  • Brooks AR, Lelkes PI, Rubanyi GM. Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow. Physiol. Genom.9, 27–41 (2002).
  • Dai G, Kaazempur-Mofrad MR, Natarajan S et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl Acad. Sci.101, 14871–14876 (2004).
  • Brown M, Goldstein J. The SREBP pathway: regulation review of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell89, 331–340 (1997).
  • Liu Y, Chen B, Lu M et al. Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arterioscler. Thromb. Vasc. Biol.76–81 (2002).
  • Weinbaum S, Chien S. Lipid transport aspects of atherogenesis. J. Biomech. Eng.115, 602–610 (1993).
  • Goldstein J, Kita T, Brown M. Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia. N. Engl. J. Med.309(5), 288–296 (1983).
  • Cai H, Harrison D. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res.87, 840–844 (2000).
  • De Keulenaer G, Chappell D, Ishizaka N, Nerem R, Alexander R, Griendling K. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state role of a superoxide-producing NADH oxidase. Circulation1094–1101 (1998).
  • Inoue N, Ramasamy S, Fukai T, Nerem R, Harrison D. Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circ. Res.79, 32–37 (1996).
  • Fukai T, Siegfried M, Ushio-Fukai M, Cheng Y, Kojda G, Harrison D. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J. Clin. Invest.105, 1631–1639 (2000).
  • Takeshita S, Inoue N, Ueyama T, Kawashima S, Yokoyama M. Shear stress enhances glutathione peroxidase expression in endothelial cells. Biochem. Biophys. Res. Commun.273, 66–71 (2000).
  • McNally J, Davis M, Giddens D et al. Role of xanthine oxidoreductase and NAD (P) H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am. J. Physiol. Heart Circ. Physiol.285(6), H2290–H2297 (2003).
  • Harrison D, Widder J, Grumbach I, Chen W, Weber M, Searles C. Endothelial mechanotransduction, nitric oxide and vascular inflammation. J. Intern. Med.259, 351–363 (2006).
  • Boo Y, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am. J. Physiol. Cell Physiol.285(3), C499–C508 (2003).
  • Nam D, Ni C, Rezvan A et al. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am. J. Physiol. Heart Circ. Physiol.297, H1535–H1543. (2009).
  • Cai H, McNally J, Weber M, Harrison D. Oscillatory shear stress upregulation of endothelial nitric oxide synthase requires intracellular hydrogen peroxide and CaMKII. J. Mol. Cell. Cardiol.37, 121–125 (2004).
  • Gnasso A, Carallo C, Irace C et al. Association between wall shear stress and flow-mediated vasodilation in healthy men. Atherosclerosis156, 171–176 (2001).
  • Silber H, Bluemke D, Ouyang P, Du Y, Post W, Lima J. The relationship between vascular wall shear stress and flow-mediated dilation: endothelial function assessed by phase-contrast magnetic resonance angiography. J. Am. Coll. Cardiol.38, 1859–1865 (2001).
  • Chen B, Li Y, Zhao Y et al. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol. Genom.7, 55–63 (2001).
  • Resnick N, Yahav H, Shay-Salit A et al. Fluid shear stress and the vascular endothelium: for better and for worse. Prog. Biophys. Mol. Biol.81, 177–199 (2003).
  • Lehoux S, Tedgui A. Cellular mechanics and gene expression in blood vessels. J. Biochem.36, 631–643 (2003).
  • Dekker R, van Soest S, Fontijn R et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood100, 1689–1698 (2002).
  • Walpola P, Gotlieb A, Cybulsky M, Langille B. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler. Thromb. Vasc. Biol.15(1), 2–10 (1995).
  • Suo J, Ferrara DE, Sorescu D, Guldberg RE, Taylor WR, Giddens DP. Hemodynamic shear stresses in mouse aortas: implications for atherogenesis. Arterioscler. Thromb. Vasc. Biol.27, 346–351 (2007).
  • Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol.49, 2379–2393 (2007).
  • Bentzon JF, Sondergaard CS, Kassem M, Falk E. Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipoprotein E knockout mice. Circulation116(18), 2053–2061 (2007).
  • Bentzon JF, Weile C, Sondergaard CS, Hindkjaer J, Kassem M, Falk E. Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice. Arterioscler. Thromb. Vasc. Biol.26(12), 2696–2702 (2006).
  • Palumbo R, Gaetano C, Melillo G, Toschi E, Remuzzi A, Capogrossi MC. Shear stress downregulation of platelet-derived growth factor receptor-b and matrix metalloprotease-2 is associated with inhibition of smooth muscle cell invasion and migration. Circulation102, 225–230 (2000).
  • Liu S, Goldman J. Role of blood shear stress in the regulation of vascular smooth muscle cell migration. IEEE Trans. Biomed. Eng.48, 474–483 (2001).
  • Redmond E, Cullen J, Cahill P et al. Endothelial cells inhibit flow-induced smooth muscle cell migration role of plasminogen activator inhibitor-1. Am. Heart Assoc.103(4), 597–603 (2001).
  • Ueba H, Kawakami M, Yaginuma T. Shear stress as an inhibitor of vascular smooth muscle cell proliferation: role of transforming growth factor-fl1 and tissue-type plasminogen activator. Arterioscler. Thromb. Vasc. Biol.17, 1512–1516 (1997).
  • Palumbo R, Gaetano C, Antonini A et al. Different effects of high and low shear stress on platelet-derived growth factor isoform release by endothelial cells consequences for smooth muscle cell migration. Arterioscler. Thromb. Vasc. Biol.405–411 (2002).
  • Bassiouny H, Song R, Hong X, Singh A, Kocharyan H, Glagov S. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation157–163 (1998).
  • Galis Z, Johnson C, Godin D et al. Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Am. Heart Assoc.852–859 (2002).
  • Braddock M, Schwachtgen JL, Houston P, Dickson MC, Lee MJ, Campbell CJ. Fluid shear stress modulation of gene expression in endothelial cells. News Physiol. Sci.13, 241–246 (1998).
  • Kenagy RD, Fischer JW, Davies MG et al. Increased plasmin and serine proteinase activity during flow-induced intimal atrophy in baboon PTFE grafts. Arterioscler. Thromb. Vasc. Biol.22, 400–404 (2002).
  • Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb. Haemost.86, 324–333 (2001).
  • Casey PJ, Dattilo JB, Dai G et al. The effect of combined arterial hemodynamics on saphenous venous endothelial nitric oxide production. J. Vasc. Surg.33, 1199–1205 (2001).
  • Kolpakov V, Gordon D, Kulik TJ. Nitric oxide–generating compounds inhibit total protein and collagen synthesis in cultured vascular smooth muscle cells. Circ. Res.76, 305–309 (1995).
  • Mattsson EJ, Kohler TR, Vergel SM, Clowes AW. Increased blood flow induces regression of intimal hyperplasia. Arterioscler. Thromb. Vasc. Biol.17, 2245–2249 (1997).
  • Cheng C, Tempel D, van Haperen R et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation113, 2744–2753 (2006).
  • Chatzizisis YS, Jonas M, Coskun AU et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation117, 993–1002 (2008).
  • Mustard J, Rowsell H, Murphy E, Downie H, Jones RJ. Intimal thrombosis in atherosclerosis. In: Evolution of Atherosclerotic Plaque. University of Chicago Press, IL, USA, 183 (1963).
  • Asakura T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ. Res.66, 1045–1066 (1990).
  • Moore J Jr, Xu C, Glagov S, Zarins C, Ku D. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis110, 225–240 (1994).
  • Gnasso A, Irace C, Carallo C et al.In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke28, 993–998 (1997).
  • Irace C. NIDDM is associated with lower wall shear stress of the common carotid artery. Diabetes48, 193–197 (1999).
  • Jiang Y, Kohara K, Hiwada K. Low wall shear stress contributes to atherosclerosis of the carotid artery in hypertensive patients. Hypertens. Res.22, 203–207 (1999).
  • Jiang Y, Kohara K, Hiwada K. Low wall shear stress in carotid arteries in subjects with left ventricular hypertrophy. Am. J. Hypertens.13(8), 892–898 (2000).
  • Jiang Y, Kohara K, Hiwada K. Association between risk factors for atherosclerosis and mechanical forces in carotid artery. Stroke2319–2324 (2000).
  • Wentzel JJ, Corti R, Fayad ZA et al. Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J. Am. Coll. Cardiol.45, 846–854 (2005).
  • Gibson C, Diaz L, Kandarpa K et al. Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler. Thromb. Vasc. Biol.13, 310–315 (1993).
  • Krams R, Wentzel JJ, Oomen JAF et al. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo: combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol.17, 2061–2065 (1997).
  • Wentzel JJ, Krams R, Schuurbiers JCH et al. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation1740–1745 (2001).
  • Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med.1371–1375 (1987).
  • Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes an intravascular ultrasound study. Am. Heart Assoc.598–603 (2000).
  • Kubis N, Checoury A, Tedgui A, Levy B. Adaptive common carotid arteries remodeling after unilateral internal carotid artery occlusion in adult patients. Cardiovasc. Res.50, 597–602 (2001).
  • Zarins C, Zatina M, Giddens D, Ku D, Glagov S. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J. Vasc. Surg.5, 413–420 (1987).
  • Bentzon J, Pasterkamp G, Falk E. Expansive remodeling is a response of the plaque-related vessel wall in aortic roots of apoE-deficient mice: an experiment of nature. Arterioscler. Thromb. Vasc. Biol257–262 (2003).
  • Von Birgelen C, Mintz G, De Vrey E et al. Atherosclerotic coronary lesions with inadequate compensatory enlargement have smaller plaque and vessel volumes: observations with three dimensional intravascular ultrasound in vivo. BMJ79, 137–142 (1998).
  • Chatzizisis Y, Jonas M, Coskun A et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation117, 993–1002 (2008).
  • Sipahi I, Tuzcu E, Schoenhagen P et al. Paradoxical increase in lumen size during progression of coronary atherosclerosis: observations from the REVERSAL trial. Atherosclerosis189, 229–235 (2006).
  • Davies M, Thomas A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N. Engl. J. Med.310, 1137–1140 (1984).
  • Burke A, Kolodgie F, Farb A et al. Healed plaque ruptures and sudden coronary death evidence that subclinical rupture has a role in plaque progression. Circulation934–940 (2001).
  • Naghavi M, Libby P, Falk E et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation108, 1664–1672 (2003).
  • Schaar J, Muller J, Falk E et al. Terminology for high-risk and vulnerable coronary artery plaques. Eur. Heart. J.25, 1077–1082 (2004).
  • Stone GW. Providing regional observations to study predictors of events in the coronary tree (PROSPECT). Transcath. Cardiovasc. Ther. (2009) (Abstract).
  • Cheng C, Tempel D, van Haperen R et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation113, 2744–2753 (2006).
  • Kaazempur-Mofrad M, Isasi A, Younis H et al. Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology. Ann. Biomed. Eng.32, 932–946 (2004).
  • Rodriguez-Granillo GA, GarcÌa-GarcÌa HM, Wentzel J et al. Plaque composition and its relationship with acknowledged shear stress patterns in coronary arteries. J. Am. Coll. Cardiol.47, 884–885 (2006).
  • McDaniel MC, Suo J, Oshinski JN et al. Low endothelial wall shear stress is associated with higher necrotic core and calcium percentage in patients with coronary artery disease. Transcath. Cardiovasc. Ther. (2008) (Abstract).
  • Kolodgie FD, Gold HK, Burke AP et al. Intraplaque hemorrhage and progression of coronary atheroma. N. Engl. J. Med.349, 2316–2326 (2003).
  • Tang D, Teng Z, Canton G et al. Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid–structure interaction study. Stroke40, 3258–3263 (2009).
  • Fukumoto Y, Hiro T, Fujii T et al. Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution. J. Am. Coll. Cardiol.51, 645–650 (2008).
  • Groen H, Gijsen F, van der Lugt A et al. Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke38, 2379–2381 (2007).
  • Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Stone PH, Feldman CL. Risk stratification of individual coronary lesions using local endothelial shear stress: a new paradigm for managing coronary artery disease. Curr. Opin. Cardiol.22, 552–564 (2007).
  • Gijsen F, Wentzel J, Thury A et al. Strain distribution over plaques in human coronary arteries relates to shear stress. Am. J. Physiol. Heart Circ. Physiol.295, H1608–H1614 (2008).
  • Stone P, Coskun A, Yeghiazarians Y et al. Prediction of sites of coronary atherosclerosis progression: in vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr. Opin. Cardiol.18, 458–470 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.