100
Views
5
CrossRef citations to date
0
Altmetric
Review

Cardiac magnetic resonance imaging: current status and future directions

&
Pages 1175-1189 | Published online: 10 Jan 2014

References

  • Geva T. Magnetic resonance imaging: historical perspective. J. Cardiovasc. Magn. Reson.8(4), 573–580 (2006).
  • Wesbey G, Higgins CB, Lanzer P, Botvinick E, Lipton MJ. Imaging and characterization of acute myocardial infarction in vivo by gated nuclear magnetic resonance. Circulation69(1), 125–130 (1984).
  • Higgins CB, Herfkens R, Lipton MJ et al. Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am. J. Cardiol.52(1), 184–188 (1983).
  • Kellman P, Aletras AH, Mancini C, Mcveigh ER, Arai AE. T2-prepared SSFP improves diagnostic confidence in edema imaging in acute myocardial infarction compared to turbo spin echo. Magn. Reson. Med.57(5), 891–897 (2007).
  • Aletras AH, Kellman P, Derbyshire JA, Arai AE. Acute TSE-SSFP: a hybrid method for T2-weighted imaging of edema in the heart. Magn. Reson. Med.59(2), 229–235 (2008).
  • Abdel-Aty H, Zagrosek A, Schulz-Menger J et al. Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation109(20), 2411–2416 (2004).
  • Stork A, Muellerleile K, Bansmann PM et al. Value of T2-weighted, first-pass and delayed enhancement, and cine CMR to differentiate between acute and chronic myocardial infarction. Eur. Radiol.17(3), 610–617 (2007).
  • Abdel-Aty H, Cocker M, Meek C, Tyberg JV, Friedrich MG. Edema as a very early marker for acute myocardial ischemia: a cardiovascular magnetic resonance study. J. Am. Coll. Cardiol.53(14), 1194–1201 (2009).
  • Aletras AH, Tilak GS, Natanzon A et al. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (dense) functional validations. Circulation113(15), 1865–1870 (2006).
  • Friedrich MG, Abdel-Aty H, Taylor A, Schulz-Menger J, Messroghli D, Dietz R. The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J. Am. Coll. Cardiol.51(16), 1581–1587 (2008).
  • Cury RC, Shash K, Nagurney Jt et al. Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation118(8), 837–844 (2008).
  • Carlsson M, Ubachs JF, Hedstrom E, Heiberg E, Jovinge S, Arheden H. Myocardium at risk after acute infarction in humans on cardiac magnetic resonance: Quantitative assessment during follow-up and validation with single-photon emission computed tomography. JACC Cardiovasc. Imaging2(5), 569–576 (2009).
  • Mikami Y SH, Nagata M, Ishida M, Kurita T, Komuro I, Ito M. Relation between signal intensity on T2-weighted MR images and presence of microvascular obstruction in patients with acute myocardial infarction. AJR Am. J. Roentgenol.193(4), W321–W326 (2009).
  • Wu KC, Zerhouni EA, Judd RM et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation97(8), 765–772 (1998).
  • Ganame J, Messalli G, Dymarkowski S et al. Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur. Heart J.30(12), 1440–1449 (2009).
  • Kumar a GJ, Sykes JM, Ephrat P et al. T2*-weighted cardiovascular magnetic resonance detects reperfusion hemorrhage in a dog model of myocardial infarction. Circulation116(II_771) (2007) (Abstract).
  • Kumar a SV, Poeschko S, Dietz R, Friedrich MG. Detection of no-reflow in patients with acute reperfused myocardial infarction using blood-oxygen-level-dependent magnetic resonance imaging. Can. J. Cardiol.22(Suppl. SD) (2006) (Abstract).
  • Schwitter J, Wacker CM, Van Rossum AC et al. MR-impact: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur. Heart J.29(4), 480–489 (2008).
  • Barmeyer AA, Stork A, Muellerleile K et al. Contrast-enhanced cardiac MR imaging in the detection of reduced coronary flow velocity reserve. Radiology243(2), 377–385 (2007).
  • Costa MA, Shoemaker S, Futamatsu H et al. Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. J. Am. Coll. Cardiol.50(6), 514–522 (2007).
  • Kuhl HP, Katoh M, Buhr C et al. Comparison of magnetic resonance perfusion imaging versus invasive fractional flow reserve for assessment of the hemodynamic significance of epicardial coronary artery stenosis. Am. J. Cardiol.99(8), 1090–1095 (2007).
  • Ingkanisorn WP, Kwong RY, Bohme NS et al. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J. Am. Coll. Cardiol.47(7), 1427–1432 (2006).
  • Jahnke C, Nagel E, Gebker R et al. Prognostic value of cardiac magnetic resonance stress tests: Adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation115(13), 1769–1776 (2007).
  • Doesch C, Seeger A, Doering J et al. Risk stratification by adenosine stress cardiac magnetic resonance in patients with coronary artery stenoses of intermediate angiographic severity. JACC Cardiovasc. Imaging2(4), 424–433 (2009).
  • Pilz G, Klos M, Ali E, Hoefling B, Scheck R, Bernhardt P. Angiographic correlations of patients with small vessel disease diagnosed by adenosine-stress cardiac magnetic resonance imaging. J. Cardiovasc. Magn. Reson.10(1), 8 (2008).
  • Simonetti OP, Kim RJ, Fieno DS et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology218(1), 215–223 (2001).
  • Abdel-Aty H, Boye P, Zagrosek A et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J. Am. Coll. Cardiol.45(11), 1815–1822 (2005).
  • Miller DD, Holmvang G, Gill JB et al. MRI detection of myocardial perfusion changes by gadolinium-DTPA infusion during dipyridamole hyperemia. Magn. Reson. Med.10(2), 246–255 (1989).
  • Paajanen H, Brasch RC, Schmiedl U, Ogan M. Magnetic resonance imaging of local soft tissue inflammation using gadolinium-DTPA. Acta Radiol.28(1), 79–83 (1987).
  • Laissy JP, Messin B, Varenne O et al. MRI of acute myocarditis: a comprehensive approach based on various imaging sequences. Chest122(5), 1638–1648 (2002).
  • Mahrholdt H, Goedecke C, Wagner A et al. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation109(10), 1250–1258 (2004).
  • Laissy JP, Hyafil F, Feldman LJ et al. Differentiating acute myocardial infarction from myocarditis: Diagnostic value of early- and delayed-perfusion cardiac MR imaging. Radiology237(1), 75–82 (2005).
  • Mahrholdt H, Wagner A, Deluigi CC et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation114(15), 1581–1590 (2006).
  • Cocker Ms a-Ah, Strohm O, Friedrich MG. Age and gender effects on the extent of myocardial involvement in acute myocarditis – a cardiovascular magnetic resonance (CMR) study. Heart95(23), 1925–1930 (2009).
  • Friedrich MG, Sechtem U, Schulz-Menger J et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J. Am. Coll. Cardiol.53(17), 1475–1487 (2009).
  • Wagner A, Schulz-Menger J, Dietz R, Friedrich MG. Long-term follow-up of patients with acute myocarditis by magnetic resonance imaging. Magma16(1), 17–20 (2003).
  • Jauhiainen T, Jarvinen VM, Hekali PE, Poutanen VP, Penttila A, Kupari M. MR gradient echo volumetric analysis of human cardiac casts: focus on the right ventricle. J. Comput. Assist. Tomogr.22(6), 899–903 (1998).
  • Rehr RB, Malloy CR, Filipchuk NG, Peshock RM. Left ventricular volumes measured by MR imaging. Radiology156(3), 717–719 (1985).
  • Sechtem U, Pflugfelder PW, Gould RG, Cassidy MM, Higgins CB. Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology163(3), 697–702 (1987).
  • Mccrohon JA, Moon JC, Prasad SK et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation108(1), 54–59 (2003).
  • Ricciardi MJ, Wu E, Davidson CJ et al. Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-mb elevation. Circulation103(23), 2780–2783 (2001).
  • Kim RJ, Wu E, Rafael A et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med.343(20), 1445–1453 (2000).
  • Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM. Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation104(10), 1101–1107 (2001).
  • Schvartzman PR, Srichai MB, Grimm RA et al. Nonstress delayed-enhancement magnetic resonance imaging of the myocardium predicts improvement of function after revascularization for chronic ischemic heart disease with left ventricular dysfunction. Am. Heart J.146(3), 535–541 (2003).
  • Harris SR, Glockner J, Misselt AJ, Syed IS, Araoz PA. Cardiac MR imaging of nonischemic cardiomyopathies. Magn. Reson. Imaging Clin. N. Am.16(2), 165–183 (2008).
  • Rudolph A, Abdel-Aty H, Bohl S et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J. Am. Coll. Cardiol.53(3), 284–291 (2009).
  • Adabag AS, Maron BJ, Appelbaum E et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J. Am. Coll. Cardiol.51(14), 1369–1374 (2008).
  • Chuang ML, Manning WJ. Left ventricular hypertrophy and excess cardiovascular mortality is late gadolinium enhancement the imaging link? J. Am. Coll. Cardiol.53(3), 292–294 (2009).
  • Vogelsberg H, Mahrholdt H, Deluigi CC et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J. Am. Coll. Cardiol.51(10), 1022–1030 (2008).
  • Maceira AM, Joshi J, Prasad SK et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation111(2), 186–193 (2005).
  • He T, Gatehouse PD, Kirk P et al. Black-blood T2* technique for myocardial iron measurement in thalassemia. J. Magn. Reson. Imaging25(6), 1205–1209 (2007).
  • Westwood M, Anderson LJ, Firmin DN et al. A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J. Magn. Reson. Imaging18(1), 33–39 (2003).
  • Anderson Lj, Holden S, Davis B et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur. Heart J.22(23), 2171–2179 (2001).
  • Smedema JP, Snoep G, Van Kroonenburgh MP et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J. Am. Coll. Cardiol.45(10), 1683–1690 (2005).
  • De Cobelli F, Esposito A, Belloni E et al. Delayed-enhanced cardiac MRI for differentiation of Fabry’s disease from symmetric hypertrophic cardiomyopathy. AJR Am. J. Roentgenol.192(3), W97–W102 (2009).
  • Imbriaco M, Spinelli L, Cuocolo A et al. MRI characterization of myocardial tissue in patients with Fabry’s disease. AJR Am. J. Roentgenol.188(3), 850–853 (2007).
  • Firmin DN, Nayler GL, Klipstein RH, Underwood SR, Rees RS, Longmore DB. In vivo validation of MR velocity imaging. J. Comput. Assist. Tomogr.11(5), 751–756 (1987).
  • Cawley PJ, Maki JH, Otto CM. Cardiovascular magnetic resonance imaging for valvular heart disease: technique and validation. Circulation119(3), 468–478 (2009).
  • Otto CM. Valvular aortic stenosis: disease severity and timing of intervention. J. Am. Coll. Cardiol.47(11), 2141–2151 (2006).
  • Tardif JC, Rodrigues AG, Hardy JF et al. Simultaneous determination of aortic valve area by the gorlin formula and by transesophageal echocardiography under different transvalvular flow conditions. Evidence that anatomic aortic valve area does not change with variations in flow in aortic stenosis. J. Am. Coll. Cardiol.29(6), 1296–1302 (1997).
  • Rebergen SA, Chin JG, Ottenkamp J, Van Der Wall EE, De Roos A. Pulmonary regurgitation in the late postoperative follow-up of tetralogy of Fallot. Volumetric quantitation by nuclear magnetic resonance velocity mapping. Circulation88(5 Pt 1), 2257–2266 (1993).
  • Masci PG, Dymarkowski S, Bogaert J. Valvular heart disease: what does cardiovascular MRI add? Eur. Radiol.18(2), 197–208 (2008).
  • Bolliger SA, Thali MJ, Ross S, Buck U, Naether S, Vock P. Virtual autopsy using imaging: bridging radiologic and forensic sciences. A review of the virtopsy and similar projects. Eur. Radiol.18(2), 273–282 (2008).
  • Jackowski C, Schweitzer W, Thali M et al. Virtopsy: postmortem imaging of the human heart in situ using MSCT and MRI. Forensic Sci. Int.149(1), 11–23 (2005).
  • Jackowski C, Christe A, Sonnenschein M, Aghayev E, Thali MJ. Postmortem unenhanced magnetic resonance imaging of myocardial infarction in correlation to histological infarction age characterization. Eur. Heart J.27(20), 2459–2467 (2006).
  • Aghayev E, Christe A, Sonnenschein M et al. Postmortem imaging of blunt chest trauma using CT and MRI: comparison with autopsy. J. Thorac. Imaging23(1), 20–27 (2008).
  • Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N. Engl.J. Med.355(3), 251–259 (2006).
  • Paelinck BP, Lamb HJ, Bax JJ, Van Der Wall EE, De Roos A. Assessment of diastolic function by cardiovascular magnetic resonance. Am. Heart J.144(2), 198–205 (2002).
  • Paelinck BP, De Roos A, Bax JJ et al. Feasibility of tissue magnetic resonance imaging: a pilot study in comparison with tissue doppler imaging and invasive measurement. J. Am. Coll. Cardiol.45(7), 1109–1116 (2005).
  • Paelinck BP, Vrints CJ, Bax JJ, Bosmans JM, De Roos A, Lamb HJ. Tissue cardiovascular magnetic resonance demonstrates regional diastolic dysfunction in remote tissue early after inferior myocardial infarction. J. Cardiovasc. Magn. Reson9(6), 877–882 (2007).
  • Rosen BD, Gerber BL, Edvardsen T et al. Late systolic onset of regional LV relaxation demonstrated in three-dimensional space by MRI tissue tagging. Am. J. Physiol. Heart Circ. Physiol.287(4), H1740–1746 (2004).
  • Castillo E, Osman NF, Rosen BD et al. Quantitative assessment of regional myocardial function with MR-tagging in a multi-center study: interobserver and intraobserver agreement of fast strain analysis with harmonic phase (HARP) MRI. J. Cardiovasc. Magn. Reson.7(5), 783–791 (2005).
  • Libby P. Inflammation in atherosclerosis. Nature420(6917), 868–874 (2002).
  • Lee SY, Mintz GS, Kim SY et al. Attenuated plaque detected by intravascular ultrasound: Clinical, angiographic, and morphologic features and post-percutaneous coronary intervention complications in patients with acute coronary syndromes. JACC Cardiovasc. Interv.2(1), 65–72 (2009).
  • Raffel OC, Merchant FM, Tearney GJ et al.In vivo association between positive coronary artery remodelling and coronary plaque characteristics assessed by intravascular optical coherence tomography. Eur. Heart J.29(14), 1721–1728 (2008).
  • Yuan C, Mitsumori LM, Ferguson MS et al.In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation104(17), 2051–2056 (2001).
  • Yuan C, Kerwin WS, Ferguson Ms et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J. Magn. Reson. Imaging15(1), 62–67 (2002).
  • Fayad ZA, Nahar T, Fallon JT et al.In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation101(21), 2503–2509 (2000).
  • Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation102(21), 2582–2587 (2000).
  • Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation106(3), 296–299 (2002).
  • Kim Wy, Astrup As, Stuber M et al. Subclinical coronary and aortic atherosclerosis detected by magnetic resonance imaging in Type 1 diabetes with and without diabetic nephropathy. Circulation115(2), 228–235 (2007).
  • Kawasaki T, Koga S, Koga N et al. Characterization of hyperintense plaque with noncontrast T(1)-weighted cardiac magnetic resonance coronary plaque imaging: comparison with multislice computed tomography and intravascular ultrasound. JACC Cardiovasc. Imaging2(6), 720–728 (2009).
  • Dharmakumar R, Hong J, Brittain JH, Plewes DB, Wright GA. Oxygen-sensitive contrast in blood for steady-state free precession imaging. Magn. Reson. Med.53(3), 574–583 (2005).
  • Arumana JM, Li D, Dharmakumar R. Deriving blood-oxygen-level-dependent contrast in MRI with T2*-weighted, T2-prepared and phase-cycled SSFP methods: Theory and experiment. Magn. Reson. Med.59(3), 561–570 (2008).
  • Friedrich MG, Niendorf T, Schulz-Menger J, Gross CM, Dietz R. Blood oxygen level-dependent magnetic resonance imaging in patients with stress-induced angina. Circulation108(18), 2219–2223 (2003).
  • Voehringer M SU, Friedrich MG. Magnetic resonance imaging in vascular biology. Artery Research2, 9–20 (2008).
  • McCommis KS, Goldstein TA, Abendschein DR et al. Quantification of regional myocardial oxygenation by magnetic resonance imaging: validation with positron emission tomography. Circ. Cardiovasc. Imaging3(1), 41–46 (2010).
  • Karamitsos TD, Leccisotti L, Arnold JR et al. Relationship between regional myocardial oxygenation and perfusion in patients with coronary artery disease: insights from cardiovascular magnetic resonance and positron emission tomography. Circ. Cardiovasc. Imaging3(1), 32–40 (2010).
  • Lancelot E, Amirbekian V, Brigger I et al. Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler. Thromb. Vasc. Biol.28(3), 425–432 (2008).
  • Mcateer MA, Schneider JE, Ali ZA et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler. Thromb. Vasc. Biol.28(1), 77–83 (2008).
  • Morris JB, Olzinski AR, Bernard RE et al. P38 MAPK inhibition reduces aortic ultrasmall superparamagnetic iron oxide uptake in a mouse model of atherosclerosis: MRI assessment. Arterioscler. Thromb. Vasc. Biol.28(2), 265–271 (2008).
  • Briley-Saebo KC, Shaw PX, Mulder WJ et al. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation117(25), 3206–3215 (2008).
  • Von Zur Muhlen C, Von Elverfeldt D, Moeller JA et al. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis. Circulation118(3), 258–267 (2008).
  • Tang TY, Howarth SP, Miller SR et al. Correlation of carotid atheromatous plaque inflammation using uspio-enhanced MR imaging with degree of luminal stenosis. Stroke39(7), 2144–2147 (2008).
  • Spuentrup E, Botnar RM, Wiethoff AJ et al. MR imaging of thrombi using ep-2104r, a fibrin-specific contrast agent: Initial results in patients. Eur. Radiol.18(9), 1995–2005 (2008).
  • Osborn EA, Jaffer FA. The year in molecular imaging. JACC Cardiovasc. Imaging2(1), 97–113 (2009).
  • Yutzy SR, Duerk JL. Pulse sequences and system interfaces for interventional and real-time MRI. J. Magn. Reson. Imaging27(2), 267–275 (2008).
  • Ratnayaka K, Faranesh AZ, Guttman MA, Kocaturk O, Saikus CE, Lederman RJ. Interventional cardiovascular magnetic resonance: still tantalizing. J. Cardiovasc. Magn. Reson.10(1), 62 (2008).
  • Arepally A, Karmarkar PV, Weiss C, Rodriguez ER, Lederman RJ, Atalar E. Magnetic resonance image-guided trans-septal puncture in a swine heart. J. Magn. Reson. Imaging21(4), 463–467 (2005).
  • Krueger JJ, Ewert P, Yilmaz S et al. Magnetic resonance imaging-guided balloon angioplasty of coarctation of the aorta: a pilot study. Circulation113(8), 1093–1100 (2006).
  • Razavi R, Hill DL, Keevil SF et al. ?Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet362(9399), 1877–1882 (2003).
  • Nazarian S, Kolandaivelu A, Zviman Mm et al. Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies. Circulation118(3), 223–229 (2008).
  • Rickers C, Gallegos R, Seethamraju RT et al. Applications of magnetic resonance imaging for cardiac stem cell therapy. J. Interv. Cardiol.17(1), 37–46 (2004).
  • Karmarkar PV, Kraitchman DL, Izbudak I et al. MR-trackable intramyocardial injection catheter. Magn. Reson. Med.51(6), 1163–1172 (2004).
  • Ganguly A, Wen Z, Daniel BL et al. Truly hybrid x-ray/MR imaging: toward a streamlined clinical system. Acad. Radiol12(9), 1167–1177 (2005).
  • Rhode KS, Sermesant M, Brogan D et al. A system for real-time XMR guided cardiovascular intervention. IEEE Trans. Med. Imaging24(11), 1428–1440 (2005).
  • Ratnayaka K, Raman VK, Faranesh AZ et al. Antegrade percutaneous closure of membranous ventricular septal defect using x-ray fused with magnetic resonance imaging. JACC Cardiovasc. Interv.2(3), 224–230 (2009).
  • Wen H, Denison TJ, Singerman RW, Balaban RS. The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J. Magn. Reson.125(1), 65–71 (1997).
  • Wansapura J, Fleck R, Crotty E, Gottliebson W. Frequency scouting for cardiac imaging with SSFP at 3 Tesla. Pediatr. Radiol.36(10), 1082–1085 (2006).
  • Yang Q, Li K, Liu X et al. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with x-ray angiography in a single center. J. Am. Coll. Cardiol.54(1), 69–76 (2009).
  • Sibley CT, Bluemke DA. Will 3.0-T make coronary magnetic resonance angiography competitive with computed tomography angiography? J. Am. Coll. Cardiol.54(1), 77–78 (2009).
  • Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn. Reson. Med.50(6), 1223–1228 (2003).
  • Sakuma H, Ichikawa Y, Suzawa N et al. Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology237(1), 316–321 (2005).
  • Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn. Reson. Med.38(4), 591–603 (1997).
  • Wintersperger BJ, Reeder SB, Nikolaou K et al. Cardiac cine MR imaging with a 32-channel cardiac coil and parallel imaging: impact of acceleration factors on image quality and volumetric accuracy. J. Magn. Reson. Imaging23(2), 222–227 (2006).
  • Schmitt M, Potthast A, Sosnovik DE et al. A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla. Magn. Reson. Med.59(6), 1431–1439 (2008).
  • Katscher U, Bornert P, Leussler C, Van Den Brink JS. Transmit sense. Magn. Reson. Med.49(1), 144–150 (2003).
  • Katscher U, Bornert P. Parallel RF transmission in MRI. NMR Biomed.19(3), 393–400 (2006).
  • Kim RJ, Fieno DS, Parrish Tb et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation100(19), 1992–2002 (1999).
  • Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn. Reson. Med.52(1), 141–146 (2004).
  • Messroghli DR, Walters K, Plein S et al. Myocardial T1 mapping: Application to patients with acute and chronic myocardial infarction. Magn. Reson. Med.58(1), 34–40 (2007).
  • Iles L, Pfluger H, Phrommintikul A et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J. Am. Coll. Cardiol.52(19), 1574–1580 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.