67
Views
0
CrossRef citations to date
0
Altmetric
Theme: Cell & Gene Therapies - Review

Myocardial regeneration in heart failure: integrated development of biological therapeutic approaches

&
Pages 1027-1039 | Published online: 10 Jan 2014

References

  • Jessup M, Brozena S. Heart failure. N. Engl. J. Med.348, 2007–2018 (2003).
  • McMurray JJ, Pfeffer MA. Heart failure. Lancet365, 1877–1889 (2005).
  • Nohira A, Lewis E, Stevenson LW. Medical management of advanced heart failure. JAMA287, 628–640 (2002).
  • Jessup M, Brozena S. Heart failure. N. Engl. J. Med.348, 2007–2018 (2003).
  • Schocken DD, Benjamin EJ, Fonarow GC et al. Prevention of heart failure. A scientific statement from the American Heart Association councils on epidemiology and prevention, clinical cardiology, cardiovascular nursing, and high blood pressure research: quality of care and outcomes research interdisciplinary working group, and functional genomics and translational biology interdisciplinary working group. Circulation117, 2544–2565 (2008).
  • Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care.27, 699–703 (2004).
  • Ho KK, Pinsky JL, Kannel WB, Levy DJ. The epidemiology of heart failure: the Framingham Study. J. Am. Coll. Cardiol.22(Suppl. A), 6–13 (1993).
  • Krum H, Roecker EB, Mohacsi P et al.; Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Study Group. Effects of initiating carvedilol in patients with severe chronic heart failure: results from the COPERNICUS Study. JAMA289, 712–718 (2003).
  • Young JB, Dunlap ME, Pfeffer MA et al.; Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity (CHARM) Investigators and Committees.Mortality and morbidity reduction with Candesartan in patients with chronic heart failure and left ventricular systolic dysfunction: results of the CHARM low-left ventricular ejection fraction trials. Circulation110, 2618–2626 (2004).
  • Herreros J. [Coronary surgery. Developments in the last decade. Indications and results]. Rev. Esp. Cardiol.58, 1107–1116 (2005).
  • Buckberg GD, Ayhanasuleas CL. The STICH trial: misguided conclusions. J. Thorac. Cardiovasc. Surg.138, 1060–1064 (2009).
  • Torrent-Guasp F. [Agonist-antagonist mechanics of the descendent and ascendent segments of the ventricular myocardial band]. Rev. Esp. Cardiol.54, 1091–1102 (2001).
  • Buckberg G, Hoffman JI, Mahajan A, Saleh S, Coghlan C. Cardiac mechanics revisted: the relationship of cardiac architecture to ventricular function. Circulation118, 2571–2587 (2008).
  • Herreros J, Trainini JC, Menicanti L, Stolf N, Cabo J, Buffolo E. [Surgical ventricular restoration after the STICH study]. Circ. Cardiovasc.17, 25–35 (2010).
  • Buckberg GD. [The post-STICH era and its impact]. Circ. Cardiovasc.17, 41–55 (2010).
  • Di Donato M, Castelvecchio S, Kukulski T et al. Surgical ventricular restoration: left ventricular shape influence on cardiac function, clinical status, and survival. Ann. Thorac. Surg.87, 455–462 (2009).
  • Herreros J, Chachques JC. Alternatives to heart transplantation: integration of biology with surgery. Front. Biosci.635–647 (2011).
  • Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation81, 1161–1172 (1990).
  • McKay RG, Pfeffer MA, Pasternak RC et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation74, 693–702 (1986).
  • Gaudron P, Eilles C, Kugler I, Ertl G. Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation87, 755–763 (1993).
  • Chachques JC. Cellular cardiac regenerative therapy in which patients? Expert Rev. Cardiovasc. Ther.7, 911–919 (2009).
  • Deuse T, Haddad F, Pham M et al. Twenty-year survivors of heart transplantation at Stanford University. Am. J. Transplant.8, 1769–1774 (2008).
  • Taylor DO, J. Stehlik LB, Edwards P et al. Registry of the International Society for Heart and Lung Transplantation: twenty-sixth official adult heart transplant report-2009. J. Heart Lung Transplant.28, 1007–1022 (2009).
  • Copeland JG, McCarthy M. University of Arizona, Cardiac Transplantation: changing patterns in selection and outcomes. Clin. Transpl.2001, 203–207 (2001).
  • Domanski MJ, Krause-Steinrauf H, Massie BM et al. A comparative analysis of the results from 4 trials of β-blocker therapy for heart failure: BEST, CIBIS-II, MERIT-HF and COPERNICUS. J. Card. Fail.9, 354–363 (2003).
  • Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation111, 2837–2849 (2005).
  • The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative Noth Scandinavian Enalapril Survival Study (CONSENSUS). N. Engl. J. Med.316, 1429–1435 (1987).
  • Pitt B, Zannad F, Remme WJ. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med.341, 709–717 (1999).
  • Remme WJ. Should ACE inhibition always be first-line therapy in heart failure: lessons from the CARMEN Study. Cardiovasc. Drugs Ther.17, 107–109 (2003).
  • Kjaer A, Hesse B. Heart failure and neuroendocrine activation: diagnostic, prognostic and therapeutic perspectives. Clin. Physiol.21(6), 661–672 (2001).
  • Kamal FA, Watanabe K, Ma M et al. A novel phenylpyridazinone, T-3999, reduces the progression of autoimmune myocarditis to dilated cardiomyopathy. Heart Vessels.26(1), 81–90 (2011).
  • Di Donato M, Dabic P, Castelvecchio S; RESTORE Group. Left ventricular geometry in normal and post-anterior myocardial infarction patients: sphericity index and ‘new’ conicity index comparisons. Eur. J. Card. Thorac. Surg.29(Suppl.), 225–230 (2006).
  • Menicanti L, Castelvecchio S, Ranucci M et al. Surgical therapy for ischemic heart failure: single-center experience with surgical anterior ventricular restoration. J. Thorac. Cardiovasc. Surg.134, 433–441 (2007).
  • Aguiar LF, Branco JNR, Catani R, Pinto I, Nakano E, Buffolo E. Myocardial revascularization and ventricular restoration through pacopexy. Arq. Bras. Cardiol.88, 173–178 (2007).
  • Elefteriades J, Edwards R. Coronary bypass in left heart failure 6. Semin. Thorac. Cardiovasc. Surg.14, 125–132 (2002).
  • Luciani GB, Montalbano G, Casali G, Mazzucco A. Predicting long-term functional results after myocardial revascularization in ischemic cardiomyopathy 5. J. Thorac. Cardiovasc. Surg.120, 479–89 (2000).
  • Capi O, Gepstein L. Myocardial regeneration strategies using human embryonic stem cell-derived cardiomyocytes. J. Control. Release116, 211–218 (2006).
  • Goh G, Self T, Barbadillo Munoz MD, Hall IP et al. Molecular and phenotypic analyses of human embryonic stem cellderived cardiomyocytes: opportunities and challenges for clinical translation. Thromb. Haemost.94, 728–737 (2005).
  • Bergmann O, Bhardwaj RD, Bernard S et al. Evidence for cardiomyocyte renewal in humans. Science324, 98–102 (2009).
  • Chachques JC, Acar C, Herreros J et al. Cellular cardiomyoplasty: clinical applications. Ann. Thorac. Surg.77, 1121–1130 (2004).
  • Chachques JC, Salanson-Lajos C, Lajos P, Shafy A, Alshamry A, Carpentier A. Cellular cardiomyoplasty for myocardial regeneration. Asian Cardiovasc. Thorac. Ann.13, 287–296 (2005).
  • Ramos GA, Hare JM. Cardiac cell-based therapy: cell types and mechanisms of action. Cell Transplant.16, 951–961 (2007).
  • Kehat I, Khimovich L, Caspi O et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol.22, 1282–1289 (2004).
  • Xue T, Cho HC, Akar FG et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell based pacemakers. Circulation111, 11–20 (2005).
  • Gavira JJ, Herreros J, Perez A et al. Autologous skeletal myoblast transplantation in patients with non acute myocardial infarction: 1-year follow-up. J. Thorac. Cardiovasc. Surg.131, 799–804 (2006).
  • Bardorff C, Brandes RP, Popp R et al. Transdifferentiation of blood derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation107, 1024–1033 (2003).
  • Genovese JA, Spadaccio C, Langer J, Habe J, Jackson J, Patel AN. Electrostimulation induces cardiomyocyte predifferentiation of fibroblasts. Biophys. Res. Commun.370, 450–455 (2008).
  • Ghodsizad A, Ruhparwar A, Marktanner R et al. Autologous transplantation of CD133+ BM derived stem cells as a therapeutic option for dilatative cardiomyopathy. Cytotherapy8, 308–310 (2006).
  • Fiorelli AI, Stolf NA, Honorato R et al. Later evolution after cardiac transplantation in Chagas disease. Transplant Proc.37, 2793–2798 (2005).
  • Trainini JC, Barisani JL, Lago N et al. [Long term changes of myocardial stem cell implant in the Chagas cardiomyopathy]. Rev. Arg. Cardiol.75, 257–263 (2007).
  • Zhang N, Li J, Luo R, Jiang J, Wang JA. Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodelling of diabetic cardiomyopathy. Exp. Clin. Endocrinol. Diabetes116, 1107–1116 (2008).
  • Gavira JJ, Perez-Ilzarbe M, Abizanda G et al. Improvement of ventricular function after transplantation of autologous skeletal myoblast in a swine model of chronic myocardial infarction is associated with increased vasculogenesis and decreased myocardial fibrosis. Cardiovasc. Res.71, 744–753 (2006).
  • Schussler O, Coirault C, Louis-Tisserand M et al. Use of arginine–glycine–aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium like tissue graft. Nat. Clin. Pract. Cardiovasc. Med.6, 240–249 (2009).
  • Christman KL, Fok HH, Sievers RE, Fang Q, Lee RJ. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng.10, 403–409 (2004).
  • Remuzzi A, Mantero S, Colombo M et al. Vascular smooth muscle cells on hyaluronic acid: culture and mechanical characterization of an engineered vascular construct. Tissue Eng.10, 699–710 (2004).
  • Davis ME, Motion JP, Narmoneva DA et al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation111, 442–450 (2005).
  • Spadaccio C, Chachques E, Chello M, Covino E, Chachques JC, Genovese J. Predifferentiated adult stem cells and matrices for cardiac cell therapy. Asian Cardiovasc. Thorac. Ann.18, 79–87 (2010).
  • Noh HK, Lee SW, Kim JM et al. Electrospinnng of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials27, 3934–3944 (2006).
  • Quintana L, Muiños TF, Genove E, Olmos MD, Borros S, Semino CE. Early tissue patterning recreated by mouse embryonic fibroblasts in a three-dimensional environment. Tissue Eng.15, 45–54 (2009).
  • Genovese J, Spadaccio AC, Chachques E et al. Cardiac predifferentiation of human mesenchymal stem cells by electrostimulation. Front. Biosci.14, 2296–3002 (2009).
  • Spadaccio C, Rainer A, Chachques JC, Covino E, Herreros J, Genovese JA. Stem cells cardiac differentiation in 3D systems. Front. Biosci.3, 901–918 (2011).
  • Chachques JC, Trainini JC, Lago N, Cortes-Morichetti M, Schussler O, Carpentier A. Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM Trial), clinical feasibility study. Ann. Thorac. Surg.85, 901–908 (2008).
  • Fu LX, Magnusson Y, Bergh CH et al. Localization of a functional autoimmune epitope on the muscarinic acetylcholine receptor-2 in patients with idiopathic dilated cardiomyopathy. J. Clin. Invest.91, 1964–1968 (1993).
  • Dangas G, Konstadoulakis MM, Epstein SE et al. Prevalence of autoantibodies against contractile proteins in coronary artery disease and their clinical implications. Am. J. Cardiol.85, 870–872 (2000).
  • Baba A, Yoshikawa T, Ogawa S. Autoantibodies produced against sarcolemmal Na–K–ATPase: possible upstream targets of arrhythmias and sudden death in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol.40, 1153–1159 (2002).
  • Noutsias M, Seeberg B, Schultheiss HP, Kühl U. Expression of cell adhesion molecules in dilated cardiomyopathy: evidence for endothelial activation in inflammatory cardiomyopathy. Circulation99, 2124–2131 (1999).
  • Caforio AL, Goldman JH, Baig MK et al. Cardiac autoantibodies in dilated cardiomyopathy become undetectable with disease progression. Heart77, 62–67 (1997).
  • Eggers KM, Lagerqvist B, Venge P et al. Persistent cardiac troponin I elevation in stabilized patients after an episode of acute coronary syndrome predicts long-term mortality. Circulation116, 1907–1914 (2007).
  • Schulze K, Witzenbichler B, Christmann C, Schultheiss HP. Disturbance of myocardial energy metabolism in experimental virus myocarditis by antibodies against nucleotide translocator. Cardiovasc. Res.44, 91–100 (1999).
  • Baba A, Akaishi M, Shimada M et al. Complete elimination of cardiodepressant IgG3 autoantibodies by immunoadsorption n patients with severe heart failure. Circ. J.74(7), 1372–1378 (2010).
  • Dörffel WV, Felix SB, Wallukat G et al. Short-term hemodynamic effects of immunoadsorption in dilated cardiomyopathy. Circulation95, 1994–1997 (1997).
  • Felix SB, Staudt A, Dörffel WV et al. Hemodynamic effects of immunoadsorption and subsequent immunoglobulin substitution in dilated cardiomyopathy: three-month results from a randomized study. J. Am. Coll. Cardiol.35, 1590–1598 (2000).
  • Müller J, Wallukat G, Dandel M et al. Immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy. Circulation101, 385–391 (2000).
  • Staudt A, Schaper F, Stangl V et al. Immunohistological changes in dilated cardiomyopathy induced by immunoadsorption therapy and subsequent immunoglobulin substitution. Circulation103, 2681–2686 (2001).
  • Matsui S, Larsson L, Hayase M et al. Specific removal of β1-adrenoceptor autoantibodies by immunoabsorption in rabbits with autoimmune cardiomyopathy improved cardiac structure and function. J. Mol. Cell. Cardiol.41, 78–85 (2006).
  • Dor V, Saab M, Coste P, Kornaszewska M, Montiglio F. Left ventricular aneurysm: a new surgical approach. J. Thorac. Cardiovasc. Surg.37, 11–19 (1989).
  • Athanasuleas CL, Buckberg GD, Stanley AH et al. Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation. J. Am. Coll. Cardiol.44, 1439–45 (2004).
  • Feindt P, Boeken U, Schipke JD, Litmathe J, Zimmermann N, Gams E. Ventricular constraint in dilated cardiomyopathy: a new, compliant textile mesh exerts prophylactic and therapeutic properties. J. Thorac. Cardiovasc. Surg.130, 1107–1113 (2005).
  • Acker MA. Clinical results with the Acorn Cardiac Restraint Device with and without mitral valve surgery. Semin. Thorac. Cardiovasc. Surg.17, 361–363 (2005).
  • Borger MA, Alam A, Murphy PM, Doenst T, David TE. Chronic ischemic mitral regurgitation: repair, replace or rethink? Ann. Thorac. Surg.81, 1153–1161 (2006).
  • Buffolo E, Branco JNR, Catani, R; RESTORE Group. End-stage cardiomyopathy and secondary mitral insufficiency surgical alternative with prosthesis and left ventricular restoration. Eur. J. Card. Thorac. Surg.29(Suppl.), S266–S271 (2006).
  • Leitz K, Miller LW. Patient selection for left ventricular devices. Curr. Opin. Cardiol.24, 246–251 (2009).
  • Stevenson LW, Pagani FD, Young JB et al. M. INTERMACS profile of advanced heart failure: The current picture. J. Heart Lung Transplant.28, 535–541 (2009).
  • Lietz K, Long JW, Khoury AG. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era. Implications for patient selection. Circulation116, 497–505 (2007).
  • Liang H, Lin H, Weng Y, Dandel M, Hetzer R. Prediction of cardiac function after weaning from ventricular assist devices. J. Thorac. Cardiovasc. Surg.130, 1555–1560 (2005).
  • Birks EJ, Tansley P, Hardy J. Left ventricular assist device and drug therapy for the reversal of heart failure. N. Engl. J. Med.355, 1873–1884 (2006).
  • Strauer BE, Brehm M, Zeus T et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation106, 1913–1918 (2002).
  • Assmus B, Schachinger V, Teupe C et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation106, 3009–3017 (2002).
  • Wollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364, 141–148 (2004).
  • Yao K, Huang R, Qian J et al. Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Heart94(9), 1147–1153 (2008).
  • Shafy A, Lavergne T, Latremouille C, Cortes-Morichetti M, Carpentier A, Chachques JC. Association of electrostimulation with cell transplantation with cell transplantation in ischemic heart disease. J. Thorac. Cardiovasc. Surg.138, 994–1001 (2009).
  • Ott HC, Matthiesen TS, Goh SK et al. Perfusion-decellularized matrix: using nature´s platform to engineer a bioartificial heart. Nat. Med.14, 213–221 (2008).
  • Herreros J, Moreno R, Gonzalez V et al. [Decision-making and surgical treatments based on cardiovascular modeling studies (CFD + X-Flow)]. RACCV8, 27–39 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.