113
Views
24
CrossRef citations to date
0
Altmetric
Review

Myocardial therapeutic angiogenesis: a review of the state of development and future obstacles

, , , &
Pages 1469-1479 | Published online: 10 Jan 2014

References

  • Lloyd-Jones D, Adams RJ, Brown TM et al. Heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation121(7), e46–e215 (2010).
  • Bonetti PO, Holmes DR Jr, Lerman A, Barsness GW. Enhanced external counterpulsation for ischemic heart disease: what’s behind the curtain?. J. Am. Coll. Cardiol.41(11), 1918–1925 (2003).
  • Elsman P, van‘t Hof AW, de Boer MJ et al. Role of collateral circulation in the acute phase of ST-segment-elevation myocardial infarction treated with primary coronary intervention. Eur. Heart J.25(10), 854–858 (2004).
  • Habib GB, Heibig J, Forman SA et al.; TIMI Investigators. Influence of coronary collateral vessels on myocardial infarct size in humans. Results of Phase I Thrombolysis in Myocardial Infarction (TIMI) trial. Circulation83(3), 739–746 (1991).
  • Sabia PJ, Powers ER, Ragosta M, Sarembock IJ, Burwell LR, Kaul S. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N. Engl. J. Med.327(26), 1825–1831 (1992).
  • Harada K, Friedman M, Lopez JJ et al. Vascular endothelial growth factor administration in chronic myocardial ischemia. Am J. Physiol.270(5 Pt 2), H1791–H1802 (1996).
  • Laham RJ, Rezaee M, Post M et al. Intrapericardial delivery of fibroblast growth factor-2 induces neovascularization in a porcine model of chronic myocardial ischemia. J. Pharmacol. Exp. Ther.292(2), 795–802 (2000).
  • Lopez JJ, Laham RJ, Stamler A et al. VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc. Res.40(2), 272–281 (1998).
  • Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest.109(3), 337–346 (2002).
  • Tepper OM, Capla JM, Galiano RD et al. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood105(3), 1068–1077 (2005).
  • Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275(5302), 964–967 (1997).
  • Heil M, Eitenmuller I, Schmitz-Rixen T, Schaper W. Arteriogenesis versus angiogenesis: similarities and differences. J. Cell. Mol. Med.10(1), 45–55 (2006).
  • Morabito CJ, Dettman RW, Kattan J, Collier JM, Bristow J. Positive and negative regulation of epicardial–mesenchymal transformation during avian heart development. Dev. Biol.234(1), 204–215 (2001).
  • Smart N, Dube KN, Riley PR. Coronary vessel development and insight towards neovascular therapy. Int. J. Exp. Pathol.90(3), 262–283 (2009).
  • Meier P, Gloekler S, Zbinden R et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation116(9), 975–983 (2007).
  • Boodhwani M, Sodha NR, Laham RJ, Sellke FW. The future of therapeutic myocardial angiogenesis. Shock26(4), 332–341 (2006).
  • Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation109(21), 2487–2491 (2004).
  • Lazarous DF, Shou M, Stiber JA et al. Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovasc. Res.44(2), 294–302 (1999).
  • Khan TA, Sellke FW, Laham RJ. Gene therapy progress and prospects: therapeutic angiogenesis for limb and myocardial ischemia. Gene Ther.10(4), 285–291 (2003).
  • Lavu M, Gundewar S, Lefer DJ. Gene therapy for ischemic heart disease. J. Mol. Cell Cardiol.50(5), 742–750 (2011).
  • Kastrup J, Jorgensen E, Ruck A et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study: the Euroinject One trial. J. Am. Coll. Cardiol.45(7), 982–988 (2005).
  • Kulkarni M, Greiser U, O’Brien T, Pandit A. Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends Biotechnol.28(1), 28–36 (2010).
  • Deiner C, Schwimmbeck PL, Koehler IS et al. Adventitial VEGF165 gene transfer prevents lumen loss through induction of positive arterial remodeling after PTCA in porcine coronary arteries. Atherosclerosis189(1), 123–132 (2006).
  • Hedman M, Hartikainen J, Syvanne M et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: Phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation107(21), 2677–2683 (2003).
  • Stewart DJ, Hilton JD, Arnold JM et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a Phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther.13(21), 1503–1511 (2006).
  • Baum C. Insertional mutagenesis in gene therapy and stem cell biology. Curr. Opin. Hematol.14(4), 337–342 (2007).
  • Pleger ST, Most P, Boucher M et al. Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation115(19), 2506–2515 (2007).
  • Su H, Takagawa J, Huang Y et al. Additive effect of AAV-mediated angiopoietin-1 and VEGF expression on the therapy of infarcted heart. Int. J. Cardiol.133(2), 191–197 (2009).
  • Gaffney MM, Hynes SO, Barry F, O’Brien T. Cardiovascular gene therapy: current status and therapeutic potential. Br. J. Pharmacol.152(2), 175–188 (2007).
  • Baker AH. Designing gene delivery vectors for cardiovascular gene therapy. Prog. Biophys. Mol. Biol.84(2–3), 279–299 (2004).
  • Fortuin FD, Vale P, Losordo DW et al. One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. Am. J. Cardiol.92(4), 436–439 (2003).
  • Grines C, Rubanyi GM, Kleiman NS, Marrott P, Watkins MW. Angiogenic gene therapy with adenovirus 5 fibroblast growth factor-4 (Ad5FGF-4): a new option for the treatment of coronary artery disease. Am. J. Cardiol.92(9B), N24–N31 (2003).
  • Grines CL, Watkins MW, Helmer G et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation105(11), 1291–1297 (2002).
  • Losordo DW, Vale PR, Hendel RC et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation105(17), 2012–2018 (2002).
  • Stewart DJ, Kutryk MJ, Fitchett D et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol. Ther.17(6), 1109–1115 (2009).
  • Rissanen TT, Yla-Herttuala S. Current status of cardiovascular gene therapy. Mol. Ther.15(7), 1233–1247 (2007).
  • Henry TD, Grines CL, Watkins MW et al. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J. Am. Coll. Cardiol.50(11), 1038–1046 (2007).
  • Putnam D. Polymers for gene delivery across length scales. Nat. Mater.5(6), 439–451 (2006).
  • Fishbein I, Alferiev IS, Nyanguile O et al. Bisphosphonate-mediated gene vector delivery from the metal surfaces of stents. Proc. Natl Acad. Sci. USA103(1), 159–164 (2006).
  • Sharif F, Hynes SO, McMahon J et al. Gene-eluting stents: comparison of adenoviral and adeno-associated viral gene delivery to the blood vessel wall in vivo. Hum. Gene Ther.17(7), 741–750 (2006).
  • Murohara T, Horowitz JR, Silver M et al. Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation97(1), 99–107 (1998).
  • Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science246(4935), 1306–1309 (1989).
  • Annex BH, Simons M. Growth factor-induced therapeutic angiogenesis in the heart: protein therapy. Cardiovasc. Res.65(3), 649–655 (2005).
  • Henry TD, Annex BH, McKendall GR et al. The VIVA trial: Vascular Endothelial Growth Factor in Ischemia for Vascular Angiogenesis. Circulation107(10), 1359–1365 (2003).
  • Simons M. Angiogenesis: where do we stand now?. Circulation111(12), 1556–1566 (2005).
  • Grines CL, Watkins MW, Mahmarian JJ et al. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J. Am. Coll. Cardiol.42(8), 1339–1347 (2003).
  • Boodhwani M, Voisine P, Ruel M et al. Comparison of vascular endothelial growth factor and fibroblast growth factor-2 in a swine model of endothelial dysfunction. Eur. J. Cardiothorac. Surg.33(4), 645–650 (2008).
  • Voisine P, Bianchi C, Ruel M et al. Inhibition of the cardiac angiogenic response to exogenous vascular endothelial growth factor. Surgery136(2), 407–415 (2004).
  • Boodhwani M, Sodha NR, Mieno S et al. Functional, cellular, and molecular characterization of the angiogenic response to chronic myocardial ischemia in diabetes. Circulation116(Suppl. 11), I31–I37 (2007).
  • Robich MP, Osipov RM, Nezafat R et al. Resveratrol improves myocardial perfusion in a swine model of hypercholesterolemia and chronic myocardial ischemia. Circulation122(Suppl. 11), S142–S149 (2010).
  • Boodhwani M, Sellke FW. Therapeutic angiogenesis in diabetes and hypercholesterolemia: influence of oxidative stress. Antioxid. Redox Signal.11(8), 1945–1959 (2009).
  • Sodha NR, Clements RT, Boodhwani M et al. Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am. J. Physiol. Heart Circ. Physiol.296(2), H428–H434 (2009).
  • Boudoulas KD, Hatzopoulos AK. Cardiac repair and regeneration: the Rubik’s cube of cell therapy for heart disease. Dis. Model Mech.2(7–8), 344–358 (2009).
  • Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation105(1), 93–98 (2002).
  • Tomita S, Li RK, Weisel RD et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation100(Suppl. 19), II247–II256 (1999).
  • Jiang Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature418(6893), 41–49 (2002).
  • Shiota M, Heike T, Haruyama M et al. Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties. Exp. Cell Res.313(5), 1008–1023 (2007).
  • Mieno S, Clements RT, Boodhwani M et al. Characteristics and function of cryopreserved bone marrow-derived endothelial progenitor cells. Ann. Thorac. Surg.85(4), 1361–1366 (2008).
  • Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res.103(11), 1204–1219 (2008).
  • Zhang Z, Deb A, Pachori A et al. Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J. Mol. Cell Cardiol.46(3), 370–377 (2009).
  • Haider H, Jiang S, Idris NM, Ashraf M. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ. Res.103(11), 1300–1308 (2008).
  • Sun L, Cui M, Wang Z et al. Mesenchymal stem cells modified with angiopoietin-1 improve remodeling in a rat model of acute myocardial infarction. Biochem. Biophys. Res. Commun.357(3), 779–784 (2007).
  • Young PP, Vaughan DE, Hatzopoulos AK. Biologic properties of endothelial progenitor cells and their potential for cell therapy. Prog. Cardiovasc. Dis.49(6), 421–429 (2007).
  • Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation109(22), 2692–2697 (2004).
  • Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am. J. Physiol. Cell Physiol.287(3), C572–C579 (2004).
  • Kawamoto A, Asahara T, Losordo DW. Transplantation of endothelial progenitor cells for therapeutic neovascularization. Cardiovasc. Radiat. Med.3(3–4), 221–225 (2002).
  • Krenning G, van Luyn MJ, Harmsen MC. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol. Med.15(4), 180–189 (2009).
  • Beeres SL, Lamb HJ, Roes SD et al. Effect of intramyocardial bone marrow cell injection on diastolic function in patients with chronic myocardial ischemia. J. Magn. Reson. Imaging27(5), 992–997 (2008).
  • Perin EC, Dohmann HF, Borojevic R et al. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation110(11 Suppl. 1), II213–II218 (2004).
  • Kinnaird T, Stabile E, Burnett MS et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res.94(5), 678–685 (2004).
  • Ziegelhoeffer T, Fernandez B, Kostin S et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res.94(2), 230–238 (2004).
  • Kupatt C, Horstkotte J, Vlastos GA et al. Embryonic endothelial progenitor cells expressing a broad range of proangiogenic and remodeling factors enhance vascularization and tissue recovery in acute and chronic ischemia. FASEB J.19(11), 1576–1578 (2005).
  • Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem.98(5), 1076–1084 (2006).
  • Chen SY, Wang F, Yan XY et al. Autologous transplantation of EPCs encoding FGF1 gene promotes neovascularization in a porcine model of chronic myocardial ischemia. Int. J. Cardiol.135(2), 223–232 (2009).
  • Gnecchi M, He H, Noiseux N et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J.20(6), 661–669 (2006).
  • Li W, Ma N, Ong LL et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells25(8), 2118–2127 (2007).
  • Wernig M, Meissner A, Foreman R et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448(7151), 318–324 (2007).
  • Huangfu D, Maehr R, Guo W et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol.26(7), 795–797 (2008).
  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science322(5903), 945–949 (2008).
  • Singla DK, Hacker TA, Ma L et al. Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J. Mol. Cell Cardiol.40(1), 195–200 (2006).
  • Behfar A, Perez-Terzic C, Faustino RS et al. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J. Exp. Med.204(2), 405–420 (2007).
  • Laflamme MA, Chen KY, Naumova AV et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol.25(9), 1015–1024 (2007).
  • Tzahor E. Wnt/β-catenin signaling and cardiogenesis: timing does matter. Dev. Cell13(1), 10–13 (2007).
  • Yan P, Nagasawa A, Uosaki H et al. Cyclosporin-A potently induces highly cardiogenic progenitors from embryonic stem cells. Biochem. Biophys. Res. Commun.379(1), 115–120 (2009).
  • Assmus B, Honold J, Schachinger V et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med.355(12), 1222–1232 (2006).
  • Lunde K, Solheim S, Aakhus S et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1199–1209 (2006).
  • Schachinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1210–1221 (2006).
  • Hirsch A, Nijveldt R, van der Vleuten PA et al. Intracoronary infusion of autologous mononuclear bone marrow cells in patients with acute myocardial infarction treated with primary PCI: pilot study of the multicenter HEBE trial. Catheter Cardiovasc. Interv.71(3), 273–281 (2008).
  • Beitnes JO, Hopp E, Lunde K et al. Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: the ASTAMI randomised, controlled study. Heart95(24), 1983–1989 (2009).
  • Tongers J, Losordo DW, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur. Heart J.32(10), 1197–1206 (2011).
  • Sun L, Bai Y, Du G. Endothelial dysfunction – an obstacle of therapeutic angiogenesis. Ageing Res. Rev.8(4), 306–313 (2009).
  • Cohen DE, Melton D. Turning straw into gold: directing cell fate for regenerative medicine. Nat. Rev. Genet.12(4), 243–252 (2011).
  • Kiskinis E, Eggan K. Progress toward the clinical application of patient-specific pluripotent stem cells. J. Clin. Invest.120(1), 51–59 (2010).
  • Schussler O, Chachques JC, Mesana TG, Suuronen EJ, Lecarpentier Y, Ruel M. 3-dimensional structures to enhance cell therapy and engineer contractile tissue. Asian Cardiovasc. Thorac. Ann.18(2), 188–198 (2010).
  • Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature451(7181), 937–942 (2008).
  • Hagege AA, Marolleau JP, Vilquin JT et al. Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first Phase I cohort of patients. Circulation114(Suppl. 1), I108–I113 (2006).
  • Menasche P. Stem cell therapy for heart failure: are arrhythmias a real safety concern?. Circulation119(20), 2735–2740 (2009).
  • Coppen SR, Fukushima S, Shintani Y et al. A factor underlying late-phase arrhythmogenicity after cell therapy to the heart: global downregulation of connexin43 in the host myocardium after skeletal myoblast transplantation. Circulation118(Suppl. 14), S138–S144 (2008).
  • Bhang SH, Cho SW, La WG et al. Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials32(11), 2734–2747 (2011).
  • Dinsmore JH, Dib N. Stem cell therapy for the treatment of acute myocardial infarction. Cardiol. Clin.28(1), 127–138 (2010).
  • Orlandi A, Chavakis E, Seeger F, Tjwa M, Zeiher AM, Dimmeler S. Long-term diabetes impairs repopulation of hematopoietic progenitor cells and dysregulates the cytokine expression in the bone marrow microenvironment in mice. Basic Res. Cardiol.105(6), 703–712 (2010).
  • Tang C, Drukker M. Potential barriers to therapeutics utilizing pluripotent cell derivatives: intrinsic immunogenicity of in vitro maintained and matured populations. Semin. Immunopathol. DOI: 10.1007/s00281-011-0269-5 (2011) (Epub ahead of print).
  • Gupta R, Tongers J, Losordo DW. Human studies of angiogenic gene therapy. Circ. Res.105(8), 724–736 (2009).
  • Lu H, Xu X, Zhang M et al. Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proc. Natl Acad. Sci. USA104(29), 12140–12145 (2007).
  • Tang J, Wang J, Zheng F et al. Combination of chemokine and angiogenic factor genes and mesenchymal stem cells could enhance angiogenesis and improve cardiac function after acute myocardial infarction in rats. Mol. Cell. Biochem.339(1–2), 107–118 (2011).
  • Bonaros N, Rauf R, Werner E et al. Neoangiogenesis after combined transplantation of skeletal myoblasts and angiopoietic progenitors leads to increased cell engraftment and lower apoptosis rates in ischemic heart failure. Interact. Cardiovasc. Thorac. Surg.7(2), 249–255 (2008).
  • Guo YH, He JG, Wu JL et al. Hepatocyte growth factor and granulocyte colony-stimulating factor form a combined neovasculogenic therapy for ischemic cardiomyopathy. Cytotherapy10(8), 857–867 (2008).
  • Wang Y, Haider HK, Ahmad N, Xu M, Ge R, Ashraf M. Combining pharmacological mobilization with intramyocardial delivery of bone marrow cells over-expressing VEGF is more effective for cardiac repair. J. Mol. Cell Cardiol.40(5), 736–745 (2006).
  • Sellke FW, Ruel M. Vascular growth factors and angiogenesis in cardiac surgery. Ann. Thorac. Surg.75(2), S685–S690 (2003).
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75(5), 843–854 (1993).
  • Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell113(6), 673–676 (2003).
  • Bushati N, Cohen SM. MicroRNA functions. Annu. Rev. Cell. Dev. Biol.23, 175–205 (2007).
  • Suarez Y, Sessa WC. MicroRNAs as novel regulators of angiogenesis. Circ. Res.104(4), 442–454 (2009).
  • Chang TC, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu. Rev. Genomics Hum. Genet.8, 215–239 (2007).
  • van Rooij E, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J. Clin. Invest.117(9), 2369–2376 (2007).
  • Silvestri P, Di Russo C, Rigattieri S et al. MicroRNAs and ischemic heart disease: towards a better comprehension of pathogenesis, new diagnostic tools and new therapeutic targets. Recent Pat. Cardiovasc. Drug Discov.4(2), 109–118 (2009).
  • Port JD, Sucharov C. Role of microRNAs in cardiovascular disease: therapeutic challenges and potentials. J. Cardiovasc. Pharmacol.56(5), 444–453 (2010).
  • Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ. Res.100(8), 1164–1173 (2007).
  • Fasanaro P, D’Alessandra Y, Di Stefano V et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J. Biol. Chem.283(23), 15878–15883 (2008).
  • Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation121(8), 1022–1032 (2010).
  • le Sage C, Nagel R, Egan DA et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J.26(15), 3699–3708 (2007).
  • O’Reilly MS, Boehm T, Shing Y et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell88(2), 277–285 (1997).
  • O’Reilly MS, Holmgren L, Shing Y et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell79(2), 315–328 (1994).
  • Troyanovsky B, Levchenko T, Mansson G, Matvijenko O, Holmgren L. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J. Cell. Biol.152(6), 1247–1254 (2001).
  • Dixelius J, Cross M, Matsumoto T, Sasaki T, Timpl R, Claesson-Welsh L. Endostatin regulates endothelial cell adhesion and cytoskeletal organization. Cancer Res.62(7), 1944–1947 (2002).
  • Kim YM, Hwang S, Pyun BJ et al. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J. Biol. Chem.277(31), 27872–27879 (2002).
  • Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res.65(10), 3967–3979 (2005).
  • Robich MP, Chu LM, Chaudray M et al. Anti-angiogenic effect of high-dose resveratrol in a swine model of metabolic syndrome. Surgery148(2), 453–462 (2010).
  • Heba G, Krzeminski T, Porc M, Grzyb J, Ratajska A, Dembinska-Kiec A. The time course of tumor necrosis factor-α, inducible nitric oxide synthase and vascular endothelial growth factor expression in an experimental model of chronic myocardial infarction in rats. J. Vasc. Res.38(3), 288–300 (2001).
  • Matsunaga T, Chilian WM, March K. Angiostatin is negatively associated with coronary collateral growth in patients with coronary artery disease. Am. J. Physiol. Heart Circ. Physiol.288(5), H2042–H2046 (2005).
  • Suuronen EJ, Hazra S, Zhang P et al. Impairment of human cell-based vasculogenesis in rats by hypercholesterolemia-induced endothelial dysfunction and rescue with L-arginine supplementation. J. Thorac. Cardiovasc. Surg.139(1), 209–216.e202 (2010).
  • Boodhwani M, Nakai Y, Mieno S et al. Hypercholesterolemia impairs the myocardial angiogenic response in a swine model of chronic ischemia: role of endostatin and oxidative stress. Ann. Thorac. Surg.81(2), 634–641 (2006).
  • Boodhwani M, Nakai Y, Voisine P et al. High-dose atorvastatin improves hypercholesterolemic coronary endothelial dysfunction without improving the angiogenic response. Circulation114(Suppl. 1), I402–I408 (2006).
  • Sodha NR, Boodhwani M, Clements RT, Xu SH, Khabbaz KR, Sellke FW. Increased antiangiogenic protein expression in the skeletal muscle of diabetic swine and patients. Arch. Surg.143(5), 463–470 (2008).
  • Boodhwani M, Mieno S, Voisine P et al. High-dose atorvastatin is associated with impaired myocardial angiogenesis in response to vascular endothelial growth factor in hypercholesterolemic swine. J. Thorac. Cardiovasc. Surg.132(6), 1299–1306 (2006).
  • Elliott PJ, Jirousek M. Sirtuins: novel targets for metabolic disease. Curr. Opin. Investig. Drugs9(4), 371–378 (2008).
  • Antoniades C, Tousoulis D, Tountas C et al. Vascular endothelium and inflammatory process, in patients with combined Type 2 diabetes mellitus and coronary atherosclerosis: the effects of vitamin C. Diabet. Med.21(6), 552–558 (2004).
  • Gupta S, Sodhi S, Mahajan V. Correlation of antioxidants with lipid peroxidation and lipid profile in patients suffering from coronary artery disease. Expert Opin. Ther. Targets13(8), 889–894 (2009).
  • Libby P, Aikawa M. Mechanisms of plaque stabilization with statins. Am. J. Cardiol.91(4A), B4–B8 (2003).
  • Lavu S, Boss O, Elliott PJ, Lambert PD. Sirtuins – novel therapeutic targets to treat age-associated diseases. Nat. Rev. Drug Discov.7(10), 841–853 (2008).
  • Sodha NR, Chu LM, Boodhwani M, Sellke FW. Pharmacotherapy for end-stage coronary artery disease. Expert Opin. Pharmacother.11(2), 207–213 (2010).
  • Niu G, Chen X. PET imaging of angiogenesis. PET Clin.4(1), 17–38 (2009).
  • Oostendorp M, Douma K, Wagenaar A et al. Molecular magnetic resonance imaging of myocardial angiogenesis after acute myocardial infarction. Circulation121(6), 775–783 (2010).
  • Wykrzykowska JJ, Henry TD, Lesser JR, Schwartz RS. Imaging myocardial angiogenesis. Nat. Rev. Cardiol.6(10), 648–658 (2009).
  • Li Z, Lee A, Huang M et al. Imaging survival and function of transplanted cardiac resident stem cells. J. Am. Coll. Cardiol.53(14), 1229–1240 (2009).
  • Rana JS, Mannam A, Donnell-Fink L, Gervino EV, Sellke FW, Laham RJ. Longevity of the placebo effect in the therapeutic angiogenesis and laser myocardial revascularization trials in patients with coronary heart disease. Am. J. Cardiol.95(12), 1456–1459 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.