62
Views
6
CrossRef citations to date
0
Altmetric
Theme: General - Review

The proarrhythmic risk of cell therapy for cardiovascular diseases

&
Pages 1593-1601 | Published online: 10 Jan 2014

References

  • Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet367(9524), 1747–1757 (2006).
  • Velagaleti RS, Pencina MJ, Murabito JM et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation118(20), 2057–2062 (2008).
  • Passier R, Van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. Nature453(7193), 322–329 (2008).
  • Smart N, Riley PR. The stem cell movement. Circ. Res.102(10), 1155–1168 (2008).
  • Smith RR, Barile L, Messina E, Marban E. Stem cells in the heart: what’s the buzz all about? – Part 1: preclinical considerations. Heart Rhythm5(5), 749–757 (2008).
  • Zhu WZ, Hauch KD, Xu C, Laflamme MA. Human embryonic stem cells and cardiac repair. Transplant. Rev. (Orlando)23(1), 53–68 (2009).
  • Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature410(6829), 701–705 (2001).
  • Tse HF, Siu CW, Zhu SG et al. Paracrine effects of direct intramyocardial implantation of bone marrow derived cells to enhance neovascularization in chronic ischaemic myocardium. Eur. J. Heart Fail.9(8), 747–753 (2007).
  • Dai W, Hale SL, Martin BJ et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation112(2), 214–223 (2005).
  • Makkar RR, Price MJ, Lill M et al. Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. J. Cardiovasc. Pharmacol. Ther.10(4), 225–233 (2005).
  • Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc. Natl Acad. Sci. USA100(13), 7808–7811 (2003).
  • Taylor DA, Atkins BZ, Hungspreugs P et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med.4(8), 929–933 (1998).
  • Johnston PV, Sasano T, Mills K et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation120(12), 1075–1083 (2009).
  • Linke A, Muller P, Nurzynska D et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc. Natl Acad. Sci. USA102(25), 8966–8971 (2005).
  • Van Laake LW, Passier R, Monshouwer-Kloots J et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res.1(1), 9–24 (2007).
  • Liao SY, Liu Y, Siu CW et al. Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm7(12), 1852–1859 (2010).
  • Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet361(9351), 47–49 (2003).
  • Meyer GP, Wollert KC, Lotz J et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (Bone Marrow Transfer to Enhance ST-Elevation Infarct Regeneration) trial. Circulation113(10), 1287–1294 (2006).
  • Dib N, Dinsmore J, Lababidi Z et al. One-year follow-up of feasibility and safety of the first U.S. randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). JACC Cardiovasc. Interv.2(1), 9–16 (2009).
  • Hare JM, Traverse JH, Henry TD et al. A randomized, double-blind, placebo-controlled, dose–escalation study of intravenous adult human mesenchymal stem cells (Prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol.54(24), 2277–2286 (2009).
  • Henning RJ. Stem cells in cardiac repair. Future Cardiol.7(1), 99–117 (2011).
  • Menasche P. Stem cell therapy for heart failure: are arrhythmias a real safety concern? Circulation119(20), 2735–2740 (2009).
  • Chen HS, Kim C, Mercola M. Electrophysiological challenges of cell-based myocardial repair. Circulation120(24), 2496–2508 (2009).
  • Menasche P, Hagege AA, Vilquin JT et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol.41(7), 1078–1083 (2003).
  • Pagani FD, Dersimonian H, Zawadzka A et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J. Am. Coll. Cardiol.41(5), 879–888 (2003).
  • Mummery C, Ward-Van Oostwaard D, Doevendans P et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation107(21), 2733–2740 (2003).
  • Davis DR, Ruckdeschel Smith R, Marban E. Human cardiospheres are a source of stem cells with cardiomyogenic potential. Stem Cells28(5), 903–904 (2010).
  • Zhang J, Wilson GF, Soerens AG et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res.104(4), e30–e41 (2009).
  • Zhang YM, Hartzell C, Narlow M, Dudley SC Jr. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation106(10), 1294–1299 (2002).
  • Rubart M, Soonpaa MH, Nakajima H, Field LJ. Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J. Clin. Invest.114(6), 775–783 (2004).
  • Peters NS, Coromilas J, Severs NJ, Wit AL. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation95(4), 988–996 (1997).
  • Cao JM, Fishbein MC, Han JB et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation101(16), 1960–1969 (2000).
  • Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS, Fishbein MC. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc. Res.50(2), 409–416 (2001).
  • Pak HN, Qayyum M, Kim DT et al. Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a Swine model of myocardial infarction. J. Cardiovasc. Electrophysiol.14(8), 841–848 (2003).
  • Siu CW, Liao SY, Liu Y, Lian Q, Tse HF. Stem cells for myocardial repair. Thromb. Haemost.104(1), 6–12 (2010).
  • Takehara N, Matsubara H. Cardiac regeneration therapy: connections to cardiac physiology. Am. J. Physiol. Heart Circ. Physiol. doi:10.1152/ajpheart.00768.2011 (2011) (Epub ahead of print).
  • Gavira JJ, Nasarre E, Abizanda G et al. Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. Eur. Heart J.31(8), 1013–1021 (2010).
  • Gepstein L, Ding C, Rehemedula D et al.In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells28(12), 2151–2161 (2010).
  • Sherman W, He KL, Yi GH et al. Myoblast transfer in ischemic heart failure: effects on rhythm stability. Cell Transplant.18(3), 333–341 (2009).
  • Fernandes S, Amirault JC, Lande G et al. Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovasc. Res.69(2), 348–358 (2006).
  • Herreros J, Prosper F, Perez A et al. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur. Heart J.24(22), 2012–2020 (2003).
  • Ince H, Petzsch M, Rehders TC, Kische S, Chatterjee T, Nienaber CA. [Percutaneous transplantation of autologous myoblasts in ischemic cardiomyopathy]. Herz30(3), 223–231 (2005).
  • Smits PC, Van Geuns RJ, Poldermans D et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol.42(12), 2063–2069 (2003).
  • Duckers HJ, Houtgraaf J, Hehrlein C et al. Final results of a Phase IIa, randomised, open-label trial to evaluate the percutaneous intramyocardial transplantation of autologous skeletal myoblasts in congestive heart failure patients: the SEISMIC trial. EuroIntervention6(7), 805–812 (2011).
  • Menasche P, Alfieri O, Janssens S et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation117(9), 1189–1200 (2008).
  • Coppen SR, Fukushima S, Shintani Y et al. A factor underlying late-phase arrhythmogenicity after cell therapy to the heart: global downregulation of connexin43 in the host myocardium after skeletal myoblast transplantation. Circulation118(14 Suppl.), S138–S144 (2008).
  • Roell W, Lewalter T, Sasse P et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature450(7171), 819–824 (2007).
  • Joung B, Kim IK, Lee MH, Yoo KJ, Kim SS. Bone marrow mononuclear stem cells transplanted in rat infarct myocardium improved the electrical conduction without evidence of proarrhythmic effects. Yonsei Med. J.48(5), 754–764 (2007).
  • Goodchild T, Pang W, Tondato F et al. Safety of intramyocardial injection of autologous bone marrow cells to treat myocardial ischemia in pigs. Cardiovasc. Revasc. Med.7(3), 136–145 (2006).
  • Assmus B, Honold J, Schachinger V et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med.355(12), 1222–1232 (2006).
  • Hendrikx M, Hensen K, Clijsters C et al. Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation114(Suppl. 1), I101–I107 (2006).
  • Huikuri HV, Kervinen K, Niemela M et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur. Heart J.29(22), 2723–2732 (2008).
  • Janssens S, Dubois C, Bogaert J et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet367(9505), 113–121 (2006).
  • Lunde K, Solheim S, Aakhus S et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1199–1209 (2006).
  • Meluzin J, Mayer J, Groch L et al. Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am. Heart J.152(5), 975.e979–e915 (2006).
  • Ruan W, Pan CZ, Huang GQ, Li YL, Ge JB, Shu XH. Assessment of left ventricular segmental function after autologous bone marrow stem cells transplantation in patients with acute myocardial infarction by tissue tracking and strain imaging. Chin. Med. J. (Engl.)118(14), 1175–1181 (2005).
  • Schachinger V, Assmus B, Britten MB et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction: final one-year results of the TOPCARE-AMI Trial. J. Am. Coll. Cardiol.44(8), 1690–1699 (2004).
  • Schachinger V, Erbs S, Elsasser A et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur. Heart J.27(23), 2775–2783 (2006).
  • Villa A, Sanchez PL, Fernandez-Aviles F. Ventricular arrhythmias following intracoronary bone marrow stem cell transplantation. Europace9(12), 1222–1223 (2007).
  • Fernandez-Aviles F, San Roman JA, Garcia-Frade J et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ. Res.95(7), 742–748 (2004).
  • Rastan AJ, Walther T, Kostelka M et al. Morphological, electrophysiological and coupling characteristics of bone marrow-derived mononuclear cells – an in vitro-model. Eur. J. Cardiothorac. Surg.27(1), 104–110 (2005).
  • Sheu JJ, Sun CK, Chang LT et al. Shock wave-pretreated bone marrow cells further improve left ventricular function after myocardial infarction in rabbits. Ann. Vasc. Surg.24(6), 809–821 (2010).
  • Yip HK, Chang LT, Wu CJ et al. Autologous bone marrow-derived mononuclear cell therapy prevents the damage of viable myocardium and improves rat heart function following acute anterior myocardial infarction. Circ. J.72(8), 1336–1345 (2008).
  • Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science276(5309), 71–74 (1997).
  • Zuk PA, Zhu M, Ashjian P et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell13(12), 4279–4295 (2002).
  • Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F. Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica86(10), 1099–1100 (2001).
  • Lian Q, Zhang Y, Zhang J et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation121(9), 1113–1123 (2010).
  • Pijnappels DA, Schalij MJ, Ramkisoensing AA et al. Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ. Res.103(2), 167–176 (2008).
  • Rose RA, Jiang H, Wang X et al. Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells26(11), 2884–2892 (2008).
  • Quevedo HC, Hatzistergos KE, Oskouei BN et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl Acad. Sci. USA106(33), 14022–14027 (2009).
  • Shake JG, Gruber PJ, Baumgartner WA et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg.73(6), 1919–1925; discussion 1926 (2002).
  • Mills WR, Mal N, Kiedrowski MJ et al. Stem cell therapy enhances electrical viability in myocardial infarction. J. Mol. Cell. Cardiol.42(2), 304–314 (2007).
  • Wang D, Zhang F, Shen W et al. Mesenchymal stem cell injection ameliorates the inducibility of ventricular arrhythmias after myocardial infarction in rats. Int. J. Cardiol.152(3), 314–320 (2010).
  • Krause K, Schneider C, Lange C et al. Endocardial electrogram analysis after intramyocardial injection of mesenchymal stem cells in the chronic ischemic myocardium. Pacing Clin. Electrophysiol.32(10), 1319–1328 (2009).
  • Chen M, Fan ZC, Liu XJ et al. Effects of autologous stem cell transplantation on ventricular electrophysiology in doxorubicin-induced heart failure. Cell Biol. Int.30(7), 576–582 (2006).
  • Price MJ, Chou CC, Frantzen M et al. Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int. J. Cardiol.111(2), 231–239 (2006).
  • Chen SL, Fang WW, Qian J et al. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin. Med. J. (Engl.)117(10), 1443–1448 (2004).
  • Katritsis DG, Sotiropoulou PA, Karvouni E et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc. Interv.65(3), 321–329 (2005).
  • Chen S, Liu Z, Tian N et al. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J. Invasive Cardiol.18(11), 552–556 (2006).
  • Katritsis DG, Sotiropoulou P, Giazitzoglou E, Karvouni E, Papamichail M. Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace9(3), 167–171 (2007).
  • Yang Z, Zhang F, Ma W et al. A novel approach to transplanting bone marrow stem cells to repair human myocardial infarction: delivery via a noninfarct-relative artery. Cardiovasc. Ther.28(6), 380–385 (2010).
  • Trachtenberg B, Velazquez DL, Williams AR et al. Rationale and design of the Transendocardial Injection of Autologous Human Cells (bone marrow or mesenchymal) in Chronic Ischemic Left Ventricular Dysfunction and Heart Failure Secondary to Myocardial Infarction (TAC-HFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy. Am. Heart J.161(3), 487–493 (2011).
  • Valiunas V, Doronin S, Valiuniene L et al. Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J. Physiol.555(Pt 3), 617–626 (2004).
  • Beeres SL, Atsma DE, Van Der Laarse A et al. Human adult bone marrow mesenchymal stem cells repair experimental conduction block in rat cardiomyocyte cultures. J. Am. Coll. Cardiol.46(10), 1943–1952 (2005).
  • Chang MG, Tung L, Sekar RB et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation113(15), 1832–1841 (2006).
  • Heubach JF, Graf EM, Leutheuser J et al. Electrophysiological properties of human mesenchymal stem cells. J. Physiol.554(Pt 3), 659–672 (2004).
  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res.61(4), 364–370 (2000).
  • Santos PM, Winterowd JG, Allen GG, Bothwell MA, Rubel EW. Nerve growth factor: increased angiogenesis without improved nerve regeneration. Otolaryngol. Head Neck Surg.105(1), 12–25 (1991).
  • Kim SK, Pak HN, Park JH et al. Cardiac cell therapy with mesenchymal stem cell induces cardiac nerve sprouting, angiogenesis, and reduced connexin43-positive gap junctions, but concomitant electrical pacing increases connexin43-positive gap junctions in canine heart. Cardiol. Young20(3), 308–317 (2010).
  • Beltrami AP, Urbanek K, Kajstura J et al. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med.344(23), 1750–1757 (2001).
  • Smart N, Bollini S, Dube KN et al.De novo cardiomyocytes from within the activated adult heart after injury. Nature474(7353), 640–644 (2011).
  • Beltrami AP, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell114(6), 763–776 (2003).
  • Messina E, De Angelis L, Frati G et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res.95(9), 911–921 (2004).
  • Davis DR, Kizana E, Terrovitis J et al. Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies. J. Mol. Cell. Cardiol.49(2), 312–321 (2010).
  • Smith RR, Barile L, Cho HC et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation115(7), 896–908 (2007).
  • Zheng S, Zhou C, Weng Y et al. Improvements of cardiac electrophysiologic stability and ventricular fibrillation threshold in rats with myocardial infarction treated with cardiac stem cells. Crit. Care Med.39(5), 1082–1088 (2011).
  • Rota M, Padin-Iruegas ME, Misao Y et al. Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ. Res.103(1), 107–116 (2008).
  • Kehat I, Kenyagin-Karsenti D, Snir M et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest.108(3), 407–414 (2001).
  • Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res.91(6), 501–508 (2002).
  • Himes N, Min JY, Lee R et al.In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction. Magn. Reson. Med.52(5), 1214–1219 (2004).
  • Hodgson DM, Behfar A, Zingman LV et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am. J. Physiol. Heart Circ. Physiol.287(2), H471–H479 (2004).
  • Kofidis T, De Bruin JL, Hoyt G et al. Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J. Heart Lung Transplant.24(6), 737–744 (2005).
  • Menard C, Hagege AA, Agbulut O et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet366(9490), 1005–1012 (2005).
  • Min JY, Yang Y, Converso KL et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol.92(1), 288–296 (2002).
  • Laflamme MA, Chen KY, Naumova AV et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol.25(9), 1015–1024 (2007).
  • Laflamme MA, Gold J, Xu C et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol.167(3), 663–671 (2005).
  • Kehat I, Khimovich L, Caspi O et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol.22(10), 1282–1289 (2004).
  • Caspi O, Huber I, Kehat I et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J. Am. Coll. Cardiol.50(19), 1884–1893 (2007).
  • Nussbaum J, Minami E, Laflamme MA et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J.21(7), 1345–1357 (2007).
  • He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res.93(1), 32–39 (2003).
  • Xue T, Cho HC, Akar FG et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation111(1), 11–20 (2005).
  • Kofidis T, De Bruin JL, Hoyt G et al. Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. J. Thorac. Cardiovasc. Surg.128(4), 571–578 (2004).
  • Min JY, Yang Y, Sullivan MF et al. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J. Thorac. Cardiovasc. Surg.125(2), 361–369 (2003).
  • Dib N, Michler RE, Pagani FD et al. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation112(12), 1748–1755 (2005).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.