112
Views
18
CrossRef citations to date
0
Altmetric
Theme: Cardiac Imaging - Review

Low-dose cardiac imaging: reducing exposure but not accuracy

, &
Pages 89-104 | Published online: 10 Jan 2014

References

  • National Council on Radiation Protection and Measurement. Ionizing radiation exposure of the population of the United States. National Council on Radiation Protection and Measurement Report 160. National Council on Radiation Protection and Measurement, MD, USA (2009).
  • Schauer DA, Linton OW. National Council on Radiation Protection and Measurements Report shows substantial medical exposure increase. Radiology253(2), 293–296 (2009).
  • 2011 CT Census Market Summary Report. CT Census and Market Summary Report. Des Planes, IL, USA (2011).
  • 2008 Nuclear Medicine Census and Market Summary Report. Nuclear Medicine Census and Market Summary Report. Des Planes, IL, USA (2008).
  • 2009 Cardiac Catherization Census and Market Summary Report. Cardiac Catherization Census and Market Summary Report. Des Planes, IL, USA (2009).
  • Einstein AJ. Medical imaging: the radiation issue. Nat. Rev. Cardiol.6(6), 436–438 (2009).
  • Chen J, Einstein AJ, Fazel R et al. Cumulative exposure to ionizing radiation from diagnostic and therapeutic cardiac imaging procedures: a population-based analysis. J. Am. Coll. Cardiol.56(9), 702–711 (2010).
  • Gerber TC, Gibbons RJ. Weighing the risks and benefits of cardiac imaging with ionizing radiation. JACC Cardiovasc. Imaging3(5), 528–535 (2010).
  • Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N. Engl. J. Med.357(22), 2277–2284 (2007).
  • Hirshfeld JW Jr, Balter S, Brinker JA et al. ACCF/AHA/HRS/SCAI clinical competence statement on physician knowledge to optimize patient safety and image quality in fluoroscopically guided invasive cardiovascular procedures: a report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training. Circulation111(4), 511–532 (2005).
  • Small GR, Kazmi M, deKemp RA, Chow BJ. Established and emerging dose reduction methods in cardiac computed tomography. J. Nucl. Cardiol.18(4), 570–579 (2011).
  • Kuon E. Radiation exposure in invasive cardiology. Heart94(5), 667–674 (2008).
  • Henzlova MJ, Duvall WL. The future of SPECT MPI: time and dose reduction. J. Nucl. Cardiol.18(4), 580–587 (2011).
  • Brateman L. Radiation safety considerations for diagnostic radiology personnel. Radiographics19(4), 1037–1055 (1999).
  • Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation116(11), 1290–1305 (2007).
  • Einstein AJ, Knuuti J. Cardiac imaging: does radiation matter? Eur. Heart J. doi:10.1093/eurheartj/ehr281 (2011) (Epub ahead of print).
  • Gerber TC, Carr JJ, Arai AE et al. Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation119(7), 1056–1065 (2009).
  • Laskey WK, Feinendegen LE, Neumann RD, Dilsizian V. Low-level ionizing radiation from noninvasive cardiac imaging: can we extrapolate estimated risks from epidemiologic data to the clinical setting? JACC. Cardiovasc. Imaging3(5), 517–524 (2010).
  • Gosling O, Loader R, Venables P, Rowles N, Morgan-Hughes G, Roobottom C. Cardiac CT: are we underestimating the dose? A radiation dose study utilizing the 2007 ICRP tissue weighting factors and a cardiac specific scan volume. Clin. Radiol.65(12), 1013–1017 (2010).
  • Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology248(1), 254–263 (2008).
  • Gerber TC, Kantor B, McCollough CH. Radiation dose and safety in cardiac computed tomography. Cardiol. Clin.27(4), 665–677 (2009).
  • McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiol. Clin. North Am.47(1), 27–40 (2009).
  • Lee CI, Haims AH, Monico EP, Brink JA, Forman HP. Diagnostic CT scans: assessment of patient, physician, and radiologist awareness of radiation dose and possible risks. Radiology231(2), 393–398 (2004).
  • Chow BJ, Abraham A, Wells GA et al. Diagnostic accuracy and impact of computed tomographic coronary angiography on utilization of invasive coronary angiography. Circ. Cardiovasc. Imaging2(1), 16–23 (2009).
  • Hamon M, Biondi-Zoccai GG, Malagutti P et al. Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. J. Am. Coll. Cardiol.48(9), 1896–1910 (2006).
  • Budoff MJ, Dowe D, Jollis JG et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J. Am. Coll. Cardiol.52(21), 1724–1732 (2008).
  • Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA298(3), 317–323 (2007).
  • Smith-Bindman R, Lipson J, Marcus R et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch. Intern. Med.169(22), 2078–2086 (2009).
  • Mark DB, Berman DS, Budoff MJ et al. ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J. Am. Coll. Cardiol.55(23), 2663–2699 (2010).
  • Hausleiter J, Meyer T, Hadamitzky M et al. Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation113(10), 1305–1310 (2006).
  • Xu L, Zhang Z. Coronary CT angiography with low radiation dose. Int. J. Cardiovasc. Imaging26(Suppl. 1), 17–25 (2010).
  • Hausleiter J, Martinoff S, Hadamitzky M et al. Image quality and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the PROTECTION II trial. JACC Cardiovasc. Imaging3(11), 1113–1123 (2010).
  • Mulkens TH, Bellinck P, Baeyaert M et al. Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology237(1), 213–223 (2005).
  • Halliburton SS. Recent technologic advances in multi-detector row cardiac CT. Cardiol. Clin.27(4), 655–664 (2009).
  • Alibek S, Brand M, Suess C, Wuest W, Uder M, Greess H. Dose reduction in pediatric computed tomography with automated exposure control. Acad. Radiol.18(6), 690–693 (2011).
  • Park EA, Lee W, Kang JH, Yin YH, Chung JW, Park JH. The image quality and radiation dose of 100-kVp versus 120-kVp ECG-gated 16-slice CT coronary angiography. Korean J. Radiol.10(3), 235–243 (2009).
  • Takakuwa KM, Halpern EJ, Gingold EL, Levin DC, Shofer FS. Radiation dose in a ‘triple rule-out’ coronary CT angiography protocol of emergency department patients using 64-MDCT: the impact of ECG-based tube current modulation on age, sex, and body mass index. AJR Am. J. Roentgenol.192(4), 866–872 (2009).
  • Pflederer T, Ho KT, Anger T et al. Assessment of regional left ventricular function by dual source computed tomography: interobserver variability and validation to laevocardiography. Eur. J. Radiol.72(1), 85–91 (2009).
  • Sun Z, Ng KH. Multislice CT angiography in cardiac imaging. Part III: radiation risk and dose reduction. Singapore Med. J.51(5), 374–380 (2010).
  • Shuman WP, Branch KR, May JM et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology248(2), 431–437 (2008).
  • Earls JP, Berman EL, Urban BA et al. Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology246(3), 742–753 (2008).
  • Gopal A, Mao SS, Karlsberg D et al. Radiation reduction with prospective ECG-triggering acquisition using 64-multidetector computed tomographic angiography. Int. J. Cardiovasc. Imaging25(4), 405–416 (2009).
  • Labounty TM, Leipsic J, Min JK et al. Effect of padding duration on radiation dose and image interpretation in prospectively ECG-triggered coronary CT angiography. AJR Am. J. Roentgenol.194(4), 933–937 (2010).
  • Alkadhi H, Leschka S. Radiation dose of cardiac computed tomography – what has been achieved and what needs to be done. Eur. Radiol.21(3), 505–509 (2011).
  • Alkadhi H, Stolzmann P, Desbiolles L et al. Low-dose, 128-slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and-shoot mode. Heart96(12), 933–938 (2010).
  • McCollough CH, Primak AN, Saba O et al. Dose performance of a 64-channel dual-source CT scanner. Radiology243(3), 775–784 (2007).
  • Duarte R, Bettencourt N, Costa JC, Fernandez G. Coronary computed tomography angiography in a single cardiac cycle with a mean radiation dose of approximately 1 mSv: initial experience. Rev. Port. Cardiol.29(11), 1667–1676 (2010).
  • Iwanczyk JS, Nygard E, Meirav O et al. photon counting energy dispersive detector arrays for x-ray imaging. IEEE Trans. Nucl. Sci.56(3), 535–542 (2009).
  • Guaricci AI, Schuijf JD, Cademartiri F et al. Incremental value and safety of oral ivabradine for heart rate reduction in computed tomography coronary angiography. Int. J. Cardiol. doi:10.1016/j.ijcard.2010.10.035 (2010) (Epub ahead of print).
  • Abadi S, Mehrez H, Ursani A, Parker M, Paul N. Direct quantification of breast dose during coronary CT angiography and evaluation of dose reduction strategies. AJR Am. J. Roentgenol.196(2), W152–W158 (2011).
  • Yilmaz MH, Yasar D, Albayram S et al. Coronary calcium scoring with MDCT: the radiation dose to the breast and the effectiveness of bismuth breast shield. Eur. J. Radiol.61(1), 139–143 (2007).
  • Yerramasu A, Venuraju S, Atwal S, Goodman D, Lipkin D, Lahiri A. Radiation dose of CT coronary angiography in clinical practice: objective evaluation of strategies for dose optimization. Eur. J. Radiol. doi:10.1016/j.ejrad.2011.02.040 (2011) (Epub ahead of print).
  • Khan A, Nasir K, Khosa F, Saghir A, Sarwar S, Clouse ME. Prospective gating with 320-MDCT angiography: effect of volume scan length on radiation dose. AJR Am. J. Roentgenol.196(2), 407–411 (2011).
  • Zimmermann E, Dewey M. Whole-heart 320-row computed tomography: reduction of radiation dose via prior coronary calcium scanning. Rofo183(1), 54–59 (2011).
  • Leipsic J, Labounty TM, Heilbron B et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR Am. J. Roentgenol.195(3), 655–660 (2010).
  • Bedayat A, Rybicki FJ, Kumamaru K et al. Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT. Int. J. Cardiovasc. Imaging doi:10.1007/s10554-011-9814-5 (2011) (Epub ahead of print).
  • den Boer A, de Feyter PJ, Hummel WA, Keane D, Roelandt JR. Reduction of radiation exposure while maintaining high-quality fluoroscopic images during interventional cardiology using novel x-ray tube technology with extra beam filtering. Circulation89(6), 2710–2714 (1994).
  • Cowen AR, Davies AG, Sivananthan MU. The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography. Clin. Radiol.63(10), 1073–1085 (2008).
  • Schueler BA. The AAPM/RSNA physics tutorial for residents: general overview of fluoroscopic imaging. Radiographics20(4), 1115–1126 (2000).
  • Nickoloff EL. AAPM/RSNA physics tutorial for residents: physics of flat-panel fluoroscopy systems: Survey of modern fluoroscopy imaging: flat-panel detectors versus image intensifiers and more. Radiographics31(2), 591–602 (2011).
  • Tsapaki V, Kottou S, Vano E et al. Correlation of patient and staff doses in interventional cardiology. Radiat. Prot. Dosimetry117(1–3), 26–29 (2005).
  • Schueler BA. Operator shielding: how and why. Tech. Vasc. Interv. Radiol.13(3), 167–171 (2010).
  • Kuon E, Dahm JB, Schmitt M, Glaser C, Gefeller O, Pfahlberg A. Short communication: time of day influences patient radiation exposure from percutaneous cardiac interventions. Br. J. Radiol.76(903), 189–191 (2003).
  • Kuon E, Dahm JB, Empen K, Robinson DM, Reuter G, Wucherer M. Identification of less-irradiating tube angulations in invasive cardiology. J. Am. Coll. Cardiol.44(7), 1420–1428 (2004).
  • Kuon E, Empen K, Robinson DM, Pfahlberg A, Gefeller O, Dahm JB. Efficiency of a minicourse in radiation reducing techniques: a pilot initiative to encourage less irradiating cardiological interventional techniques (ELICIT). Heart91(9), 1221–1222 (2005).
  • Justino H. The ALARA concept in pediatric cardiac catheterization: techniques and tactics for managing radiation dose. Pediatr. Radiol.36(Suppl. 2), 146–153 (2006).
  • Trianni A, Bernardi G, Padovani R. Are new technologies always reducing patient doses in cardiac procedures? Radiat. Prot. Dosimetry117(1–3), 97–101 (2005).
  • Mahesh M. Fluoroscopy: patient radiation exposure issues. Radiographics21(4), 1033–1045 (2001).
  • Cusma JT, Bell MR, Wondrow MA, Taubel JP, Holmes DR Jr. Real-time measurement of radiation exposure to patients during diagnostic coronary angiography and percutaneous interventional procedures. J. Am. Coll. Cardiol.33(2), 427–435 (1999).
  • Geijer H, Beckman KW, Andersson T, Persliden J. Radiation dose optimization in coronary angiography and percutaneous coronary intervention (PCI). II. Clinical evaluation. Eur. Radiol.12(11), 2813–2819 (2002).
  • Sadick V, Reed W, Collins L, Sadick N, Heard R, Robinson J. Impact of biplane versus single-plane imaging on radiation dose, contrast load and procedural time in coronary angioplasty. Br. J. Radiol.83(989), 379–394 (2010).
  • Kotre CJ, Reay J, Chapple CL. The influence of patient size on patient doses in cardiology. Radiat. Prot. Dosimetry117(1–3), 222–224 (2005).
  • Neill J, Douglas H, Richardson G et al. Comparison of radiation dose and the effect of operator experience in femoral and radial arterial access for coronary procedures. Am. J. Cardiol.106(7), 936–940 (2010).
  • Jolly SS, Yusuf S, Cairns J et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet377(9775), 1409–1420 (2011).
  • Geijer H, Persliden J. Radiation exposure and patient experience during percutaneous coronary intervention using radial and femoral artery access. Eur. Radiol.14(9), 1674–1680 (2004).
  • Neofotistou V, Tsapaki V, Kottou S, Schreiner-Karoussou A, Vano E. Does digital imaging decrease patient dose? A pilot study and review of the literature. Radiat. Prot. Dosimetry117(1–3), 204–210 (2005).
  • Holly TA, Abbott BG, Al-Mallah M et al. Single photon-emission computed tomography. J. Nucl. Cardiol.17(5), 941–973 (2010).
  • Dilsizian V, Stephen LB, Beanlands RMD et al. PET myocardial perfusion and metabolism clinical imaging. J. Nucl. Cardiol.16(4), 651 (2009).
  • Hachamovitch R, Rozanski A, Shaw LJ et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur. Heart J.32(8), 1012–1024 (2011).
  • Gibbons RJ. Myocardial perfusion imaging. Heart83(3), 355–360 (2000).
  • Beller GA, Heede RC. SPECT imaging for detecting coronary artery disease and determining prognosis by noninvasive assessment of myocardial perfusion and myocardial viability. J. Cardiovasc. Transl. Res.4(4), 416–424 (2011).
  • Hachamovitch R, Berman DS, Kiat H et al. Incremental prognostic value of adenosine stress myocardial perfusion single-photon emission computed tomography and impact on subsequent management in patients with or suspected of having myocardial ischemia. Am. J. Cardiol.80(4), 426–433 (1997).
  • Hunter C, Ziadi MC, Etele J, Hill J, Beanlands RS, and deKemp R. New effective dose estimates for Rubidium-82 based on dynamic PET/CT imaging in humans. J. Nucl. Med.51, 282 (2010).
  • Senthamizhchelvan S, Bravo PE, Esaias C et al. Human biodistribution and radiation dosimetry of 82Rb. J. Nucl. Med.51(10), 1592–1599 (2010).
  • Vasken Dilsizian MD, Stephen LB, Beanlands RMD et al. PET myocardial perfusion and metabolism clinical imaging. J. Nucl. Cardiol.16(4), 651–651 (2009).
  • Pagnanelli RA, Basso DA. Myocardial perfusion imaging with 201Tl. J. Nucl. Med.Technol.38(1), 1–3 (2010).
  • Madsen MT. Recent advances in SPECT imaging. J. Nucl. Med.48(4), 661–673 (2007).
  • Duvall WL, Croft LB, Godiwala T, Ginsberg E, George T, Henzlova MJ. Reduced isotope dose with rapid SPECT MPI imaging: initial experience with a CZT SPECT camera. J. Nucl. Cardiol.17(6), 1009–1014 (2010).
  • Gimelli A, Bottai M, Genovesi D, Giorgetti A, Di Martino F, Marzullo P. High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: preliminary clinical results. Eur. J. Nucl. Med. Mol. Imaging doi:10.1007/s00259-011-1918-6 (2011) (Epub ahead of print).
  • Duvall WL, Wijetunga MN, Klein TM et al. The prognosis of a normal stress-only Tc-99m myocardial perfusion imaging study. J. Nucl. Cardiol.17(3), 370–377 (2010).
  • Songy B, Lussato D, Guernou M, Queneau M, Geronazzo R. Comparison of myocardial perfusion imaging using thallium-201 between a new cadmium-zinc-telluride cardiac camera and a conventional SPECT camera. Clin. Nucl. Med.36(9), 776–780 (2011).
  • DePuey EG, Bommireddipalli S, Clark J, Leykekhman A, Thompson LB, Friedman M. A comparison of the image quality of full-time myocardial perfusion SPECT vs wide beam reconstruction half-time and half-dose SPECT. J. Nucl. Cardiol.18(2), 273–280 (2011).
  • Borges-Neto S, Pagnanelli RA, Shaw LK et al. Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies. J. Nucl. Cardiol.14(4), 555–565 (2007).
  • Ali I, Ruddy TD, Almgrahi A, Anstett FG, Wells RG. Half-time SPECT myocardial perfusion imaging with attenuation correction. J. Nucl. Med.50(4), 554–562 (2009).
  • Boden WE, O’Rourke RA, Teo KK et al. Optimal medical therapy with or without PCI for stable coronary disease. N. Engl. J. Med.356(15), 1503–1516 (2007).
  • Thomas GS, Maddahi J. The technetium shortage. J. Nucl. Cardiol.17(6), 993–998 (2010).
  • Balter S, Hopewell JW, Miller DL, Wagner LK, Zelefsky MJ. Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair. Radiology254(2), 326–341 (2010).
  • Duvall WL, Croft LB, Ginsberg ES et al. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J. Nucl. Cardiol.18(5), 847–857 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.