150
Views
6
CrossRef citations to date
0
Altmetric
Theme: Cardiac Imaging - Review

Non-contrast-enhanced magnetic resonance angiography: techniques and applications

&
Pages 75-88 | Published online: 10 Jan 2014

References

  • Norgren L, Hiatt WR, Dormandy JA et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J. Vasc. Surg.45(Suppl. S), S5–S67 (2007).
  • Revel D, Loubeyre P, Delignette A, Douek P, Amiel M. Contrast-enhanced magnetic resonance tomoangiography: a new imaging technique for studying thoracic great vessels. Magn. Reson. Imaging11(8), 1101–1105 (1993).
  • Prince MR. Gadolinium-enhanced MR aortography. Radiology191(1), 155–164 (1994).
  • Leung DA, Debatin JF. Three-dimensional contrast-enhanced magnetic resonance angiography of the thoracic vasculature. Eur. Radiol.7(7), 981–989 (1997).
  • Steffens JC, Link J, Grassner J et al. Contrast-enhanced, K-space-centered, breath-hold MR angiography of the renal arteries and the abdominal aorta. J. Magn. Reson. Imaging7(4), 617–622 (1997).
  • Debatin JF, Hany TF. MR-based assessment of vascular morphology and function. Eur. Radiol.8(4), 528–539 (1998).
  • Haustein J, Laniado M, Niendorf HP et al. Triple-dose versus standard-dose gadopentetate dimeglumine: a randomized study in 199 patients. Radiology186(3), 855–860 (1993).
  • Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet356(9234), 1000–1001 (2000).
  • Marckmann P, Skov L, Rossen K et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J. Am. Soc. Nephrol.17(9), 2359–2362 (2006).
  • Juluru K, Vogel-Claussen J, Macura KJ, Kamel IR, Steever A, Bluemke DA. MR imaging in patients at risk for developing nephrogenic systemic fibrosis: protocols, practices, and imaging techniques to maximize patient safety. Radiographics29(1), 9–22 (2009).
  • Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol. Dial. Transplant.21(4), 1104–1108 (2006).
  • Kallen AJ, Jhung MA, Cheng S et al. Gadolinium-containing magnetic resonance imaging contrast and nephrogenic systemic fibrosis: a case–control study. Am. J. Kidney Dis.51(6), 966–975 (2008).
  • Thomsen HS, Marckmann P, Logager VB. Update on nephrogenic systemic fibrosis. Magn. Reson. Imaging Clin. N. Am.16(4), 551–560, vii (2008).
  • Abraham JL, Thakral C, Skov L, Rossen K, Marckmann P. Dermal inorganic gadolinium concentrations: evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis. Br. J. Dermatol.158(2), 273–280 (2008).
  • Axel L, Shimakawa A, MacFall J. A time-of-flight method of measuring flow velocity by magnetic resonance imaging. Magn. Reson. Imaging4(3), 199–205 (1986).
  • Parker DL, Yuan C, Blatter DD. MR angiography by multiple thin slab 3D acquisition. Magn. Reson. Med.17(2), 434–451 (1991).
  • Edelman RR, Mattle HP, Wallner B et al. Extracranial carotid arteries: evaluation with ‘black blood’ MR angiography. Radiology177(1), 45–50 (1990).
  • Simonetti OP, Finn JP, White RD, Laub G, Henry DA. ‘Black blood’ T2-weighted inversion-recovery MR imaging of the heart. Radiology199(1), 49–57 (1996).
  • Shonai T, Takahashi T, Ikeguchi H, Miyazaki M, Amano K, Yui M. Improved arterial visibility using short-tau inversion-recovery (STIR) fat suppression in non-contrast-enhanced time-spatial labeling inversion pulse (Time-SLIP) renal MR angiography (MRA). J. Magn. Reson. Imaging29(6), 1471–1477 (2009).
  • Shimada K, Isoda H, Okada T et al. Non-contrast-enhanced hepatic MR angiography with true steady-state free-precession and time spatial labeling inversion pulse: optimization of the technique and preliminary results. Eur. J. Radiol.70(1), 111–117 (2009).
  • Katoh M, Spuentrup E, Stuber M et al. Flow targeted 3D steady-state free-precession coronary MR angiography: comparison of three different imaging approaches. Invest. Radiol.44(12), 757–762 (2009).
  • Edelman RR, Sheehan JJ, Dunkle E, Schindler N, Carr J, Koktzoglou I. Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: technical considerations and clinical feasibility. Magn. Reson. Med.63(4), 951–958 (2010).
  • Shimada K, Isoda H, Okada T et al. Non-contrast-enhanced MR portography with time-spatial labeling inversion pulses: comparison of imaging with three-dimensional half-Fourier fast spin-echo and true steady-state free-precession sequences. J. Magn. Reson. Imaging29(5), 1140–1146 (2009).
  • Shimada K, Isoda H, Okada T et al. Non-contrast-enhanced MR angiography for selective visualization of the hepatic vein and inferior vena cava with true steady-state free-precession sequence and time-spatial labeling inversion pulses: preliminary results. J. Magn. Reson. Imaging29(2), 474–479 (2009).
  • Miyazaki M, Isoda H. Non-contrast-enhanced MR angiography of the abdomen. Eur. J. Radiol.80(1), 9–23 (2011).
  • White EM, Edelman RR, Wedeen VJ, Brady TJ. Intravascular signal in MR imaging: use of phase display for differentiation of blood-flow signal from intraluminal disease. Radiology161(1), 245–249 (1986).
  • Miyazaki M, Sugiura S, Tateishi F, Wada H, Kassai Y, Abe H. Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin echo. J. Magn. Reson. Imaging12(5), 776–783 (2000).
  • Wedeen VJ, Meuli RA, Edelman RR et al. Projective imaging of pulsatile flow with magnetic resonance. Science230(4728), 946–948 (1985).
  • Miyazaki M, Takai H, Sugiura S, Wada H, Kuwahara R, Urata J. Peripheral MR angiography: separation of arteries from veins with flow-spoiled gradient pulses in electrocardiography-triggered three-dimensional half-Fourier fast spin-echo imaging. Radiology227(3), 890–896 (2003).
  • Miyazaki M, Lee VS. Nonenhanced MR angiography. Radiology248(1), 20–43 (2008).
  • Storey P, Atanasova IP, Lim RP et al. Tailoring the flow sensitivity of fast spin-echo sequences for noncontrast peripheral MR angiography. Magn. Reson. Med.64(4), 1098–1108 (2010).
  • Koktzoglou I, Edelman RR. STAR and STARFIRE for flow-dependent and flow-independent noncontrast carotid angiography. Magn. Reson. Med.61(1), 117–124 (2009).
  • Brittain JH, Olcott EW, Szuba A et al. Three-dimensional flow-independent peripheral angiography. Magn. Reson. Med.38(3), 343–354 (1997).
  • Wright GA, Nishimura DG, Macovski A. Flow-independent magnetic resonance projection angiography. Magn. Reson. Med.17(1), 126–140 (1991).
  • Schar M, Kozerke S, Fischer SE, Boesiger P. Cardiac SSFP imaging at 3 Tesla. Magn. Reson. Med.51(4), 799–806 (2004).
  • Stafford RB, Sabati M, Mahallati H, Frayne R. 3D non-contrast-enhanced MR angiography with balanced steady-state free precession Dixon method. Magn. Reson. Med.59(2), 430–433 (2008).
  • Stafford RB, Sabati M, Haakstad MJ, Mahallati H, Frayne R. Unenhanced MR angiography of the renal arteries with balanced steady-state free precession dixon method. AJR Am. J. Roentgenol.191(1), 243–246 (2008).
  • Stuber M, Weiss RG. Coronary magnetic resonance angiography. J. Magn. Reson. Imaging26(2), 219–234 (2007).
  • Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn. Reson. Med.50(6), 1223–1228 (2003).
  • Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology204(1), 272–277 (1997).
  • Schaafsma JD, Velthuis BK, Majoie CB et al. Intracranial aneurysms treated with coil placement: test characteristics of follow-up MR angiography – multicenter study. Radiology256(1), 209–218 (2010).
  • Bi X, Weale P, Schmitt P, Zuehlsdorff S, Jerecic R. Non-contrast-enhanced four-dimensional (4D) intracranial MR angiography: a feasibility study. Magn. Reson. Med.63(3), 835–841 (2010).
  • Edelman RR, Koktzoglou I, Ankenbrandt WJ, Dunkle EE. Cerebral venography using fluid-suppressed STARFIRE. Magn. Reson. Med.62(2), 538–543 (2009).
  • Du YP, Jin Z. Simultaneous acquisition of MR angiography and venography (MRAV). Magn. Reson. Med.59(5), 954–958 (2008).
  • Ishimaru H, Ochi M, Morikawa M et al. Accuracy of pre- and postcontrast 3D time-of-flight MR angiography in patients with acute ischemic stroke: correlation with catheter angiography. Am. J. Neuroradiol.28(5), 923–926 (2007).
  • Zwanenburg JJ, Hendrikse J, Takahara T, Visser F, Luijten PR. MR angiography of the cerebral perforating arteries with magnetization prepared anatomical reference at 7 T: comparison with time-of-flight. J. Magn. Reson. Imaging28(6), 1519–1526 (2008).
  • Morze CV, Purcell DD, Banerjee S et al. High-resolution intracranial MRA at 7T using autocalibrating parallel imaging: initial experience in vascular disease patients. Magn. Reson. Imaging26(10), 1329–1333 (2008).
  • Morze CV, Xu D, Purcell DD et al. Intracranial time-of-flight MR angiography at 7T with comparison to 3T. J. Magn. Reson. Imaging26(4), 900–904 (2007).
  • Maderwald S, Ladd SC, Gizewski ER et al. To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T. MAGMA21(1–2), 159–167 (2008).
  • Debrey SM, Yu H, Lynch JK et al. Diagnostic accuracy of magnetic resonance angiography for internal carotid artery disease: a systematic review and meta-analysis. Stroke39(8), 2237–2248 (2008).
  • Babiarz LS, Romero JM, Murphy EK et al. Contrast-enhanced MR angiography is not more accurate than unenhanced 2D time-of-flight MR angiography for determining > or = 70% internal carotid artery stenosis. AJR Am. J. Roentgenol.30(4), 761–768 (2009).
  • Yu W, Underhill HR, Ferguson MS et al. The added value of longitudinal black-blood cardiovascular magnetic resonance angiography in the cross sectional identification of carotid atherosclerotic ulceration. J. Cardiovasc. Magn. Reson.11, 31 (2009).
  • Yim YJ, Choe YH, Ko Y et al. High signal intensity halo around the carotid artery on maximum intensity projection images of time-of-flight MR angiography: a new sign for intraplaque hemorrhage. J. Magn. Reson. Imaging27(6), 1341–1346 (2008).
  • Babiarz LS, Astor B, Mohamed MA, Wasserman BA. Comparison of gadolinium-enhanced cardiovascular magnetic resonance angiography with high-resolution black blood cardiovascular magnetic resonance for assessing carotid artery stenosis. J. Cardiovasc. Magn. Reson.9(1), 63–70 (2007).
  • Satogami N, Okada T, Koyama T, Gotoh K, Kamae T, Togashi K. Visualization of external carotid artery and its branches: non-contrast-enhanced MR angiography using balanced steady-state free-precession sequence and a time-spatial labeling inversion pulse. J. Magn. Reson. Imaging30(3), 678–683 (2009).
  • Bagan P, Vidal R, Martinod E et al. Cerebral ischemia during carotid artery cross-clamping: predictive value of phase-contrast magnetic resonance imaging. Ann. Vasc. Surg.20(6), 747–752 (2006).
  • Fan Z, Zhang Z, Chung YC et al. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J. Magn. Reson. Imaging31(3), 645–654 (2010).
  • Kurosaki Y, Yoshida K, Endo H, Chin M, Yamagata S. Association between carotid atherosclerosis plaque with high signal intensity on T1-weighted imaging and subsequent ipsilateral ischemic events. Neurosurgery68(1), 62–67; discussion 67 (2011).
  • Tan MA, DeVeber G, Kirton A, Vidarsson L, MacGregor D, Shroff M. Low detection rate of craniocervical arterial dissection in children using time-of-flight magnetic resonance angiography: causes and strategies to improve diagnosis. J. Child Neurol.24(10), 1250–1257 (2009).
  • Huang HH, Tyan YS, Tsao TF. Time-of-flight MR angiography not for diagnosing subclavian steal syndrome. Radiology253(3), 897; author reply 897 (2009).
  • Bitar R, Gladstone D, Sahlas D, Moody A. MR angiography of subclavian steal syndrome: pitfalls and solutions. AJR Am. J. Roentgenol.183(6), 1840–1841 (2004).
  • Amano Y, Takahama K, Kumita S. Non-contrast-enhanced MR angiography of the thoracic aorta using cardiac and navigator-gated magnetization-prepared three-dimensional steady-state free precession. J. Magn. Reson. Imaging27(3), 504–509 (2008).
  • Potthast S, Mitsumori L, Stanescu LA et al. Measuring aortic diameter with different MR techniques: comparison of three-dimensional (3D) navigated steady-state free-precession (SSFP), 3D contrast-enhanced magnetic resonance angiography (CE-MRA), 2D T2 black blood, and 2D cine SSFP. J. Magn. Reson. Imaging31(1), 177–184 (2010).
  • Krishnam MS, Tomasian A, Malik S, Desphande V, Laub G, Ruehm SG. Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases. Eur. Radiol.20(6), 1311–1320 (2010).
  • Uribe S, Beerbaum P, Sorensen TS, Rasmusson A, Razavi R, Schaeffter T. Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating. Magn. Reson. Med.62(4), 984–992 (2009).
  • Francois CJ, Tuite D, Deshpande V, Jerecic R, Weale P, Carr JC. Pulmonary vein imaging with unenhanced three-dimensional balanced steady-state free precession MR angiography: initial clinical evaluation. Radiology250(3), 932–939 (2009).
  • Hecht EM, Rosenkrantz A. Pulmonary MR angiography techniques and applications. Magn. Reson. Imaging Clin. N. Am.17(1), 101–131 (2009).
  • Ley S, Kauczor HU. MR imaging/magnetic resonance angiography of the pulmonary arteries and pulmonary thromboembolic disease. Magn. Reson. Imaging Clin. N. Am.16(2), 263–273, ix (2008).
  • Wittlinger T, Dzemali O, Martinovic I, Moritz A. Assessment of coronary artery bypass grafts patency with different magnetic resonance technologies. Eur. J. Cardiothorac. Surg.30(3), 436–442 (2006).
  • Greil GF, Desai MY, Fenchel M et al. Reproducibility of free-breathing cardiovascular magnetic resonance coronary angiography. J. Cardiovasc. Magn. Reson.9(1), 49–56 (2007).
  • Kato S, Kitagawa K, Ishida N et al. Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J. Am. Coll. Cardiol.56(12), 983–991 (2010).
  • Krishnam MS, Tomasian A, Deshpande V et al. Noncontrast 3D steady-state free-precession magnetic resonance angiography of the whole chest using nonselective radiofrequency excitation over a large field of view: comparison with single-phase 3D contrast-enhanced magnetic resonance angiography. Invest. Radiol.43(6), 411–420 (2008).
  • Greil GF, Seeger A, Miller S et al. Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki disease. Pediatr. Radiol.37(7), 666–673 (2007).
  • Suzuki A, Takemura A, Inaba R, Sonobe T, Tsuchiya K, Korenaga T. Magnetic resonance coronary angiography to evaluate coronary arterial lesions in patients with Kawasaki disease. Cardiol. Young16(6), 563–571 (2006).
  • Clemente A, Del Borrello M, Greco P et al. Anomalous origin of the coronary arteries in children: diagnostic role of three-dimensional coronary MR angiography. Clin. Imaging.34(5), 337–343 (2010).
  • Katscher U, Bornert P, Leussler C, van den Brink JS. Transmit SENSE. Magn. Reson. Med.49(1), 144–150 (2003).
  • van Elderen SG, Versluis MJ, Westenberg JJ et al. Right coronary MR angiography at 7 T: a direct quantitative and qualitative comparison with 3 T in young healthy volunteers. Radiology257(1), 254–259 (2010).
  • Potthast S, Maki JH. Non-contrast-enhanced MR imaging of the renal arteries. Magn. Reson. Imaging Clin. N. Am.16(4), 573–584, vii (2008).
  • Utsunomiya D, Miyazaki M, Nomitsu Y et al. Clinical role of non-contrast magnetic resonance angiography for evaluation of renal artery stenosis. Circ. J.72(10), 1627–1630 (2008).
  • Wilson GJ, Maki JH. Non-contrast-enhanced MR imaging of renal artery stenosis at 1.5 Tesla. Magn. Reson. Imaging Clin. N. Am.17(1), 13–27 (2009).
  • Wyttenbach R, Braghetti A, Wyss M et al. Renal artery assessment with nonenhanced steady-state free precession versus contrast-enhanced MR angiography. Radiology245(1), 186–195 (2007).
  • Maki JH, Wilson GJ, Eubank WB, Glickerman DJ, Millan JA, Hoogeveen RM. Navigator-gated MR angiography of the renal arteries: a potential screening tool for renal artery stenosis. AJR Am. J. Roentgenol.188(6), W540–W546 (2007).
  • Mohrs OK, Petersen SE, Schulze T et al. High-resolution 3D unenhanced ECG-gated respiratory-navigated MR angiography of the renal arteries: comparison with contrast-enhanced MR angiography. AJR Am. J. Roentgenol.195(6), 1423–1428 (2010).
  • Lanzman RS, Voiculescu A, Walther C et al. ECG-gated nonenhanced 3D steady-state free precession MR angiography in assessment of transplant renal arteries: comparison with DSA. Radiology252(3), 914–921 (2009).
  • Liu X, Berg N, Sheehan J et al. Renal transplant: nonenhanced renal MR angiography with magnetization-prepared steady-state free precession. Radiology251(2), 535–542 (2009).
  • Francois CJ, Lum DP, Johnson KM et al. Renal arteries: isotropic, high-spatial-resolution, unenhanced MR angiography with three-dimensional radial phase contrast. Radiology258(1), 254–260 (2011).
  • Hartung MP, Grist TM, Francois CJ. Magnetic resonance angiography: current status and future directions. J. Cardiovasc. Magn. Reson.13, 19 (2011).
  • Glockner JF, Takahashi N, Kawashima A et al. Non-contrast renal artery MRA using an inflow inversion recovery steady state free precession technique (Inhance): comparison with 3D contrast-enhanced MRA. J. Magn. Reson. Imaging31(6), 1411–1418 (2010).
  • Atanasova IP, Kim D, Lim RP et al. Noncontrast MR angiography for comprehensive assessment of abdominopelvic arteries using quadruple inversion-recovery preconditioning and 3D balanced steady-state free precession imaging. J. Magn. Reson. Imaging33(6), 1430–1439 (2011).
  • Shimada K, Isoda H, Okada T et al. Non-contrast-enhanced hepatic MR angiography: do two-dimensional parallel imaging and short tau inversion recovery methods shorten acquisition time without image quality deterioration? Eur. J. Radiol.77(1), 137–142 (2011).
  • Smith CS, Sheehy N, McEniff N, Keogan MT. Magnetic resonance portal venography: use of fast-acquisition true FISP imaging in the detection of portal vein thrombosis. Clin. Radiol.62(12), 1180–1188 (2007).
  • Ito K, Koike S, Shimizu A et al. Portal venous system: evaluation with unenhanced MR angiography with a single-breath-hold ECG-synchronized 3D half-Fourier fast spin-echo sequence. AJR Am. J. Roentgenol.191(2), 550–554 (2008).
  • Hahn WY, Hecht EM, Friedman B, Babb JS, Jacobowitz GR, Lee VS. Distal lower extremity imaging: prospective comparison of 2-dimensional time of flight, 3-dimensional time-resolved contrast-enhanced magnetic resonance angiography, and 3-dimensional bolus chase contrast-enhanced magnetic resonance angiography. J. Comput. Assist. Tomogr.31(1), 29–36 (2007).
  • Thurnher S, Miller S, Schneider G et al. Diagnostic performance of although gadobenate dimeglumine enhanced MR angiography of the iliofemoral and calf arteries: a large-scale multicenter trial. AJR Am. J. Roentgenol.189(5), 1223–1237 (2007).
  • Kang JW, Lim TH, Choi CG, Ko GY, Kim JK, Kwon TW. Evaluation of contrast-enhanced magnetic resonance angiography (MRA) using Gd-DOTA compared with time-of-flight MRA in the diagnosis of clinically significant non-coronary arterial disease. Eur. Radiol.20(8), 1934–1944 (2010).
  • Lim RP, Hecht EM, Xu J et al. 3D non gadolinium-enhanced ECG-gated MRA of the distal lower extremities: preliminary clinical experience. J. Magn. Reson. Imaging28(1), 181–189 (2008).
  • Hoey ET, Ganeshan A, Puni R, Henderson J, Crowe PM. Fresh blood imaging of the peripheral vasculature: an emerging unenhanced MR technique. AJR Am. J. Roentgenol.195(6), 1444–1448 (2010).
  • Huff S, Honal M, Baumann T, Hennig J, Markl M, Ludwig U. Continuously moving table time-of-flight angiography of the peripheral veins. Magn. Reson. Med.63(5), 1219–1229 (2010).
  • Tsaftaris SA, Offerman E, Edelman RR, Koktzoglou I. Fully automated reconstruction of ungated ghost magnetic resonance angiograms. J. Magn. Reson. Imaging31(3), 655–662 (2010).
  • Nguyen T, Cooper M, Spincemaille P, Winchester P, Prince M, Wang Y. Three dimensional non-contrast MRA of the lower extremities using stepping thin slab acquisition: Initial experience in healthy subjects. Proc. Intl Soc. Mag. Reson. Med.19, 33–37 (2011).
  • Bangerter NK, Cukur T, Hargreaves BA et al. Three-dimensional fluid-suppressed T2-prep flow-independent peripheral angiography using balanced SSFP. Magn. Reson. Imaging29(8), 1119–1124 (2011).
  • Lim RP, Storey P, Atanasova IP et al. Three-dimensional electrocardiographically gated variable flip angle FSE imaging for MR angiography of the hands at 3.0 T: initial experience. Radiology252(3), 874–881 (2009).
  • Roditi G, Maki JH, Oliveira G, Michaely HJ. Renovascular imaging in the NSF Era. J. Magn. Reson. Imaging30(6), 1323–1334 (2009).
  • Utsunomiya M, Nozaki Y, Nakamura S. A case of successful intervention without a contrast agent for a chronic totally occlusive lesion of the superficial femoral artery. Cardiovasc. Revasc. Med.11(3), 175–181 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.