657
Views
3
CrossRef citations to date
0
Altmetric
Editorial

Effective antioxidant therapy for the management of arrhythmia

, &
Pages 797-800 | Published online: 10 Jan 2014

References

  • Chugh SS, Reinier K, Teodorescu C et al. Epidemiology of sudden cardiac death: clinical and research implications. Prog. Cardiovasc. Dis.51, 213–228 (2008).
  • Ide T, Tsutsui H, Kinugawa S et al. Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ. Res.86, 152–157 (2000).
  • Sam F, Kerstetter DL, Pimental DR et al. Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J. Card. Fail.11, 473–480 (2005).
  • Sovari AA, Dudley SC. Oxidative stress and atrial fibrillation. In: Studies on Cardiovascular Disorders (1st Edition). Sauer H, Ajay MS, Laurindo FR (Eds). Humana Press, NY, USA, 373–389 (2010).
  • Song Y, Cook NR, Albert CM, Van DM, Manson JE. Effects of vitamins C and E and β-carotene on the risk of Type 2 diabetes in women at high risk of cardiovascular disease: a randomized controlled trial. Am. J. Clin. Nutr.90, 429–437 (2009).
  • Sesso HD, Buring JE, Christen WG et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians Health Study II randomized controlled trial. JAMA300, 2123–2133 (2008).
  • Wosniak J Jr, Santos CX, Kowaltowski AJ, Laurindo FR. Cross-talk between mitochondria and NADPH oxidase: effects of mild mitochondrial dysfunction on angiotensin II-mediated increase in Nox isoform expression and activity in vascular smooth muscle cells. Antioxid. Redox Signal.11, 1265–1278 (2009).
  • Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc. Natl Acad. Sci. USA107, 15565–15570 (2010).
  • Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch. Biochem. Biophys.397, 342–344 (2002).
  • Freeman BA, White CR, Gutierrez H, Paler-Martinez A, Tarpey MM, Rubbo H. Oxygen radical-nitric oxide reactions in vascular diseases. Adv. Pharmacol.34, 45–69 (1995).
  • Beresewicz A, Horackova M. Alterations in electrical and contractile behavior of isolated cardiomyocytes by hydrogen peroxide: possible ionic mechanisms. J. Mol. Cell. Cardiol.23, 899–918 (1991).
  • Morita N, Sovari AA, Xie Y et al. Increased susceptibility of aged hearts to ventricular fibrillation during oxidative stress. Am. J. Physiol. Heart Circ. Physiol.297, H1594–H1605 (2009).
  • Shang LL, Sanyal S, Pfahnl AE et al. NF-κB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II. Am. J. Physiol. Cell Physiol.294, C372–C379 (2008).
  • Morita N, Lee JH, Xie Y, Sovari A, Qu Z, Weiss JN, Karagueuzian HS. Suppression of re-entrant and multifocal ventricular fibrillation by the late sodium current blocker ranolazine. J. Am. Coll. Cardiol.57, 366–375 (2011).
  • Liu M, Liu H, Dudley SC Jr. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. Circ. Res.107, 967–974 (2010).
  • Thomas GP, Sims SM, Cook MA, Karmazyn M. Hydrogen peroxide-induced stimulation of L-type calcium current in guinea pig ventricular myocytes and its inhibition by adenosine A1 receptor activation. J. Pharmacol. Exp. Ther.286, 1208–1214 (1998).
  • Anzai K, Ogawa K, Kuniyasu A, Ozawa T, Yamamoto H, Nakayama H. Effects of hydroxyl radical and sulfhydryl reagents on the open probability of the purified cardiac ryanodine receptor channel incorporated into planar lipid bilayers. Biochem. Biophys. Res. Commun.249, 938–942 (1998).
  • Morris TE, Sulakhe PV. Sarcoplasmic reticulum Ca(2+)-pump dysfunction in rat cardiomyocytes briefly exposed to hydroxyl radicals. Free Radic. Biol. Med.22, 37–47 (1997).
  • Hoch B, Meyer R, Hetzer R, Krause EG, Karczewski P. Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ. Res.84, 713–721 (1999).
  • Erickson JR, Joiner ML, Guan X et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell133, 462–474 (2008).
  • Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J. Biol. Chem.266, 11144–11152 (1991).
  • Aiba T, Hesketh GG, Liu T et al. Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. Cardiovasc. Res.85, 454–463 (2010).
  • Hashambhoy YL, Winslow RL, Greenstein JL. CaMKII-induced shift in modal gating explains L-type Ca(2+) current facilitation: a modeling study. Biophys. J.96, 1770–1785 (2009).
  • Gros DB, Jongsma HJ. Connexins in mammalian heart function. Bioessays18, 719–730 (1996).
  • Gutstein DE, Morley GE, Tamaddon H et al. Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ. Res.88, 333–339 (2001).
  • Kieken F, Mutsaers N, dolmatova E et al. Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ. Res.104, 1103–1112 (2009).
  • Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Tada M, Hori M. Functional role of c-Src in gap junctions of the cardiomyopathic heart. Circ. Res.85, 672–681 (1999).
  • Aikawa R, Komuro I, Yamazaki T et al. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J. Clin. Invest.100, 1813–1821 (1997).
  • Seshiah PN, Kereiakes DJ, Vasudevan SS et al. Activated monocytes induce smooth muscle cell death: role of macrophage colony-stimulating factor and cell contact. Circulation105, 174–180 (2002).
  • Kasi VS, Xiao HD, Shang LL et al. Cardiac-restricted angiotensin-converting enzyme overexpression causes conduction defects and connexin dysregulation. Am. J. Physiol. Heart Circ. Physiol.293, H182–H192 (2007).
  • Sovari AA, Jiao Z, Dolmatova E et al. c-Src tyrosine kinase is a potential therapeutic target to prevent angiotensin-II mediated connexin43 remodeling and ventricular arrhythmia. Circulation122 (2010) (Abstract).
  • Sovari AA, Iravanian S, Mitchell D et al. Mitochondria-targeted antioxidant, mito-tempo, prevents angiotensin ii mediated connexin43 remodeling and sudden cardiac death. J. Investig. Med.59, 692–730 (2011) (Abstract).
  • Kukushkina OI, Fedotkina LK, Balashov VP, Balykova LA, Sosunov AA. [Effect of NO-synthetase inhibitor L-NAME on occlusive and reperfusion arrhythmias in cats]. Bull. Eksp. Biol. Med.127, 509–511 (1999).
  • O’Rourke B, Cortassa S, Aon MA. Mitochondrial ion channels: gatekeepers of life and death. Physiology (Bethesda)20, 303–315 (2005).
  • Carnes CA, Chung MK, Nakayama T et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ. Res.89, E32–E38 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.