104
Views
9
CrossRef citations to date
0
Altmetric
Drug Profile

Ranolazine: an antianginal drug with antiarrhythmic properties

, &
Pages 815-827 | Published online: 10 Jan 2014

References

  • Priori S, Zipes D. Sudden cardiac death. Blackwell Publishing Inc., Malden, MA, USA (2006).
  • Prystowsky EN, Camm J, Lip GYH et al. The impact of new and emerging clinical data on treatment strategies for atrial fibrillation. J. Cardiovasc. Electrophysiol.21, 946–958 (2010).
  • Marban E, Yamagishi T, Tomaselli GF. Structure and function of voltage-gated sodium channels. J. Physiol.508, 647–657 (1998).
  • Undrovinas AI, Maltsev VA, Kyle JW, Silvermann N, Sabbah HN. Gating of the late Na+ channel in normal and failing human myocardium. J. Mol. Cell. Cardiol.34, 1477–1489 (2002).
  • Maltsev VA, Undrovinas AI. A multi-modal composition of the late Na+ current in human ventricular cardiomyocytes. Cardiovasc. Res.69, 116–127 (2006).
  • Saint DA. The cardiac persistent sodium current: an appealing therapeutic target? Br. J. Pharmacol.153, 1133–1142 (2008).
  • Zaza A, Belardinelli L, Shryock JC. Pathophysiology and pharmacology of the cardiac ‘late sodium current’. Pharmacol. Ther.119, 326–339 (2008).
  • Valvidia CR, Chu WW, Pu J, Foell JD, Haworth RA, Wolff MR et al. Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J. Mol. Cell. Cardiol.38, 475–483 (2005).
  • Mugelli A, Tamargo J. Pharmacology of ranolazine. Ischemia begets ischemia: a new drug to interrupt the vicious cycle. Oxford Clinical Publishing, Oxford, UK (2009).
  • Hammarström AK, Gage PW. Hypoxia and persistent sodium current. Eur Biophys. J.31, 323–330 (2002).
  • Undrovinas AI, Maltsev VA, Sabbah HN. Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: role of sustained inward current. Cell. Mol. Life Sci.55, 494–505 (1999).
  • Belardinelli L, Antzelevitch C, Fraser H. Inhibition of late (sustained/persistent) sodium current: a potential drug target to reduce intracellular sodium-dependent calcium overload and its detrimental effects on cardiomyocyte function. Eur. Heart J.6, 13–17 (2004).
  • Antzelevitch C, Belardinelli L, Zygmunt AC et al. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation110, 904–910 (2004).
  • Noble D, Noble PJ. Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium–calcium overload. Heart92, iv1–iv5 (2006).
  • Sossalla S, Kallmeyer B, Wagner S et al. Altered Na+ currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J. Am. Coll. Cardiol.55, 2330–2342 (2010).
  • Antzelevitch C, Burashnikov A, Sicouri S, Belardinelli L. Electrophysiological basis for the antiarrhythmic actions of ranolazine. Heart Rhythm. DOI: 10.1016/j.hrthm.2011.03.045 (2011) (Epub ahead of print).
  • Undrovinas AI, Fleidervish IA, Makielski JC. Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ. Res.71, 1231–1241 (1992).
  • Wu J Corr PB. Palmitoyl carnitine modifies sodium currents and induces transient inward current in ventricular myocytes. Am. J. Physiol.266, H1034–H1046 (1994).
  • Ma JH, Luo AT, Zhang PH. Effect of hydrogen peroxide on persistent sodium current in guinea pig ventricular myocytes. Acta Pharmacol. Sin.26, 828–834 (2005).
  • Song Y, Shryock JC, Wagner S, Maier LS, Belardinelli L. Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction. J. Pharmacol. Exp. Ther.318, 214–222 (2006).
  • Ahern GP, Hsu SF, Klyachko VA, Jackson MB. Induction of persistent sodium current by exogenous and endogenous nitric oxide. J. Biol. Chem.275, 28810–28815 (2000).
  • Hale SL, Shryock JC, Belardinelli L, Sweeney M, Kloner RA. Late sodium current inhibition as a new cardioprotective approach. J. Mol. Cell. Cardiol.44, 954–967 (2008).
  • Belardinelli L, Shryock JC, Fraser H. The mechanism of ranolazine action to reduce ischemia-induced diastolic dysfunction. Eur. Heart J.8(Suppl. A), A10–A13 (2006).
  • Wu L, Shryock JC, Song Y, Belardinelli L. An increase in late sodium current potentiates the proarrhythmic activities of low-risk QT-prolonging drugs in female rabbit hearts. J. Pharmacol. Exp. Ther.316, 718–726 (2006).
  • Song Y, Shryock JC, Wu L, Belardinelli L. Antagonism by ranolazine of the proarrhythmic effects of increasing late INa in guinea pig ventricular myocytes. J. Cardiovasc. Pharmacol.44, 192–199 (2004).
  • Fraser H, Belardinelli L, Wang L, Light PE, McVeigh JJ, Clanachan AS. Ranolazine decreases diastolic calcium accumulation caused by ATX-II or ischemia in rat hearts. J. Mol. Cell. Cardiol.41, 1031–1038 (2006).
  • Song Y, Shryock JC, Belardinelli L. An increase of late sodium current induces delayed afterdepolarizations and sustained triggered activity in atrial myocytes. Am. J. Physiol. Heart Circ. Physiol.294, H2031–H2039 (2008).
  • Wu L, Rajamani S, Li H, January CT, Shryock JC, Belardinelli L. Reduction of repolarization reserve unmasks the proarrhythmic role of endogenous late Na+ current in the heart. Am. J. Physiol. Heart Circ. Physiol.297, H1048–H1057 (2009).
  • Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ. Res.99, 172–182 (2006).
  • Kohlhaas M, Liu T, Knopp A et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation121, 1606–1613 (2010).
  • Chaitman BR. Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions. Circulation113, 2462–2472 (2006).
  • Keating GM. Ranolazine: a review of its use in chronic stable angina pectoris. Drugs68, 2483–2503 (2008).
  • Rajamani S, El-Bizri N, Shryock JC, Makielski JC, Belardinelli L. Use-dependent block of cardiac late Na+ current by ranolazine. Heart Rhythm6, 1625–1631 (2009).
  • Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN. Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J. Cardiovasc. Electrophysiol.17(Suppl. 1), S169–S177 (2006).
  • Schram G, Zhang L, Derakhchan K, Ehrlich JR, Belardinelli L, Nattel S. Ranolazine: ion-channel-blocking actions and in vivo electrophysiological effects. Br. J. Pharmacol.42, 1300–1308 (2004).
  • Rajamani S, Shryock JC, Belardinelli L. Mechanism of ranolazine block of cardiac Na channels. Eur. Heart J.28, 400 (2007).
  • Wang GK, Calderon J, Wang SY. State- and use-dependent block of muscle Nav1. 4 and neuronal Nav1. 7 voltage-gated Na+ channel isoforms by ranolazine. Mol. Pharmacol.73, 940–948 (2008).
  • Zygmunt AC, Nesterenko VV, Rajamani S et al. Mechanism of the preferential block of the atrial sodium current by ranolazine. Biophys. J.96(Suppl.), 250a (2009).
  • Wu L, Shryock JC, Song Y, Li Y, Antzelevitch C, Belardinelli L. Antiarrhythmic effects of ranolazine in a guinea pig in vitro model of long-QT syndrome. J. Pharmacol. Exp. Ther.310, 599–605 (2004).
  • Fredj S, Sampson KJ, Liu H, Kass RS. Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action. Br. J. Pharmacol.148, 16–24 (2006).
  • Sossalla S, Wagner S, Rasenack ECL et al. Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts: role of late sodium current and intracellular ion accumulation. J. Mol. Cell. Cardiol.45, 32–43 (2008).
  • Huang H, Priori SG, Napolitano C, O’Leary ME, Chahine M. Y1767C, a novel SCN5A mutation, induces a persistent Na+ current and potentiates ranolazine inhibition of Nav1. 5 channels. Am. J. Physiol. Heart Circ. Physiol.300, H288–H299 (2011).
  • Rajamani S, Shryock JC, Belardinelli L. Rapid kinetic interactions of ranolazine with HERG K+ current. J. Cardiovasc. Pharmacol.51, 581–589 (2008).
  • Soliman D, Wang L, Hamming KSC et al. Inhibition of reverse-mode sodium-calcium exchange by the anti-anginal agent ranolazine. FASEB J.24, 961–969 (2010).
  • Burashnikov A, Di Diego JM, Zygmunt AC, Belardinelli L, Antzelevitch C. Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation. Circulation116, 1449–1457 (2007).
  • Allen TJ, Chapman RA. Effects of ranolazine on L-type calcium channel currents in guinea-pig single ventricular myocytes. Br. J. Pharmacol.118, 249–254 (1996).
  • Zhao G, Walsh E, Shryock J et al. Anti-adrenergic and hemodynamic effects of ranolazine in conscious dogs. J. Cardiovasc. Pharmacol.57, 639–647 (2011).
  • Sicouri S, Glass A, Belardinelli L, Antzelevitch C. Antiarrhythmic effects of ranolazine in canine pulmonary vein sleeve preparations. Heart Rhythm5, 1019–1026 (2008).
  • Shtyock JC, Belardinelli L. Inhbition of late sodium current to reduce electrical and mechanical dysfunction of ischaemic myocardium. Br. J. Pharmacol.153, 1133–1142 (2008).
  • Belardinelli L, Antzelevitch C, Vos M. Potential predictors of drug-induced torsade de pointes: early afterdepolarizations, ectopic beats and increased dispersion of ventricular repolarization. TIPS24, 619–625 (2003).
  • Wu L, Ma J, Li H et al. Late sodium current contributes to the reverse rate-dependent effect of IKr inhibition on ventricular repolarization. Circulation123, 1713–1720 (2011).
  • Wang WQ, Robertson C, Dhalla AK, Belardinelli L. Antitorsadogenic effects of ({+/-})-N-(2, 6-dimethyl-phenyl)-(4[2-hydroxy-3-(2-methoxyphenoxy)propyl]-1-piperazine (ranolazine) in anesthetized rabbits. J. Pharmacol. Exp. Ther.325, 875–881 (2008).
  • Antoons G, Oros A, Beekman JD et al. Late Na+ current inhibition by ranolazine reduces torsades de pointes in the chronic atrioventricular block dog model. J. Am. Coll. Cardiol.55, 801–809 (2010).
  • Wu J, Cheng L, Lammers WJ et al. Sinus node dysfunction in ATX-II-induced in-vitro murine model of long QT3 syndrome and rescue effect of ranolazine. Prog. Biophys. Mol. Biol.98, 198–207 (2008).
  • Dhalla AK, Wang WQ, Dow J et al. Ranolazine, an antianginal agent, markedly reduces ventricular arrhythmias induced by ischemia and ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol.297, H1923–H1929 (2009).
  • Kloner RA, Dow JS, Bhandari A. First direct comparison of the late sodium current blocker ranolazine to established antiarrhythmic agents in an ischemia/reperfusion model. J. Cardiovasc. Pharmacol. Ther. DOI: 10.1177/1074248410386485 (2010) (Epub ahead of print).
  • Morita N, Lee JH, Xie Y et al. Suppression of re-entrant and multifocal ventricular fibrillation by the late sodium current blocker ranolazine. J. Am. Coll. Cardiol.57, 366–375 (2011).
  • Kumar K, Nearing BD, Cartoli CR, Kwaku KF, Belardinelli L. Effect of ranolazine on ventricular vulnerability and defibrillation threshold in the intact porcine heart. J. Cardiovas. Electrophysiol.19, 1073–1079 (2008).
  • Nieminen T, Nanbu DY, Datti IP et al. Antifibrillatory effect of ranolazine during severe coronary stenosis in the intact porcine model. Heart Rhythm.8, 608–614 (2011).
  • Kumar K, Nearing BD, Carvas M et al. Ranolazine exerts potent effects on atrial electrical properties and abbreviates atrial fibrillation duration in the intact porcine heart. J. Cardiovasc. Electrophysiol.20, 796–802 (2009).
  • Carvas M, Nascimento BC, Acar M, Nearing BD, Belardinelli L, Verrier RL. Intrapericardial ranolazine prolongs atrial refractory period and markedly reduces atrial fibrillation inducibility in the intact porcine heart. J. Cardiovasc. Pharmacol.55, 286–291 (2010).
  • Burashnikov A, Sicouri S, Di Diego JM, Belardinelli L, Antzelevitch C. Synergistic effect of the combination of ranolazine and dronedarone to suppress atrial fibrillation. J. Am. Coll. Cardiol.56, 1216–1224 (2010).
  • Sicouri S, Burashnikov A, Belardinelli L, Antzelevitch C. Synergistic electrophysiologic and antiarrhythmic effects of the combination of ranolazine and chronic amiodarone in canine atria. Circ. Arrhythm. Electrophysiol.3, 88–95 (2010).
  • Scirica BM, Morrow DA, Hod H et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the Metabolic Efficiency with Ranolazine for Less Ischemia in Non ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation116, 1647–1652 (2007).
  • Morrow DA, Scirica BM, Karwatowska-Prokopczuk E et al. Effects of ranolazine on recurrent cardiovascular events in patients with non-ST-elevation acute coronary syndromes: the MERLIN-TIMI 36 randomized trial. JAMA297, 1775–1783 (2007).
  • Murdock DK, Overton N, Kersten M, Kaliebe J, Devecchi F. The effect of ranolazine on maintaining sinus rhythm in patients with resistant atrial fibrillation. Indian Pacing Electrophysiol. J.8, 175–181 (2008).
  • Miles RH, Murdock DK. Ranolazine verses amiodarone for prophylaxis against atrial fibrillation following coronary artery bypass surgery. Heart Rhythm7, S258 (2010).
  • Murdock DK, Kersten M, Kaliebe J, Larrain G. The use of oral ranolazine to convert new or paroxysmal atrial fibrillation: a review of experience with implications for possible ‘pill in the pocket’ approach to atrial fibrillation. Indian Pacing Electrophysiol. J.9, 260–267 (2009).
  • Murdock DK, Reiffel JA, Kaliebe J et al. The conversion of paroxysmal or initial onset atrial fibrillation with oral ranolazine: implications for a new ‘pill-in-pocket’ approach in structural heart disease. JFIB2, 705–710 (2011).
  • Moss AJ, Zareba W, Schwarz KQ, Rosero S, McNitt S, Robinson JL. Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J. Cardiovasc. Electrophysiol.19, 1289–1293 (2008).
  • Rousseau MF, Pouleur H, Cocco G, Wolff AA. Comparative efficacy of ranolazine versus atenolol for chronic angina pectoris. Am. J. Cardiol.95, 311–316 (2005).
  • Hayashida W, van Eyll C, Rousseau MF, Pouleur H. Effects of ranolazine on left ventricular regional diastolic function in patients with ischemic heart disease. Cardiovasc. Drugs Ther.8, 741–747 (1994).
  • Bennett PB, Yazawa K, Makita N, George AL Jr. Molecular mechanism for an inherited cardiac arrhythmia. Nature376, 683–685 (1995).
  • Lindegger N, Hagen BM, Marks AR, Lederer WJ, Kass RS. Diastolic transient inward current in long QT syndrome type 3 is caused by Ca2+ overload and inhibited by ranolazine. J. Mol. Cell. Cardiol.47, 326–334 (2009).
  • Splawski I, Timothy KW, Sharpe LM et al. Ca(V)1. 2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell.1, 19–31 (2004).
  • Sicouri S, Timothy KW, Zygmunt AC et al. Cellular basis for the electrocardiographic and arrhythmic manifestations of Timothy syndrome: effects of ranolazine. Heart Rhythm4, 638–647 (2007).
  • Shah DP, Baez-Escudero JL, Weisberg IL, Beshai JF, Burke MC. Ranolazine safely decreases ventricular and atrial fibrillation in Timothy syndrome (LQT8). Pacing Clin. Electrophysiol. DOI: 10.1111/j. 1540–8159.2010.02913.x. (2010) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.