175
Views
8
CrossRef citations to date
0
Altmetric
Theme: Diabetes, Obesity & Metabolic Syndrome - Review

Novel pathways and therapies in experimental diabetic atherosclerosis

, &
Pages 323-335 | Published online: 10 Jan 2014

References

  • Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care16(2), 434–444 (1993).
  • Candido R, Allen TJ, Lassila M et al. Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation109(12), 1536–1542 (2004).
  • Candido R, Jandeleit-Dahm KA, Cao Z et al. Prevention of accelerated atherosclerosis by angiotensin-converting enzyme inhibition in diabetic apolipoprotein E-deficient mice. Circulation106(2), 246–253 (2002).
  • El-Osta A, Brasacchio D, Yao D et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med.205(10), 2409–2417 (2008).
  • Hsueh W, Abel ED, Breslow JL et al. Recipes for creating animal models of diabetic cardiovascular disease. Circ. Res.100(10), 1415–1427 (2007).
  • Cao Z, Cooper ME, Wu LL et al. Blockade of the renin–angiotensin and endothelin systems on progressive renal injury. Hypertension36(4), 561–568 (2000).
  • No authors listed. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet355(9200), 253–259 (2000).
  • Lindholm LH, Ibsen H, Dahlof B et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention for Endpoint Reduction in Hypertension Study (LIFE): a randomised trial against atenolol. Lancet359(9311), 1004–1010 (2002).
  • Yusuf S, Teo KK, Pogue J et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med.358(15), 1547–1559 (2008).
  • Parving HH, Brenner BM, McMurray JJ et al. Aliskiren Trial in Type 2 Diabetes Using Cardio-Renal Endpoints (ALTITUDE): rationale and study design. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association. Nephrol. Dial. Transplant.24(5), 1663–1671 (2009).
  • Cao Z, Bonnet F, Candido R et al. Angiotensin type 2 receptor antagonism confers renal protection in a rat model of progressive renal injury. J. Am. Soc. Nephrol.13(7), 1773–1787 (2002).
  • Cao Z, Kelly DJ, Cox A et al. Angiotensin type 2 receptor is expressed in the adult rat kidney and promotes cellular proliferation and apoptosis. Kidney Int.58(6), 2437–2451 (2000).
  • Jandeleit-Dahm K, Lassila M, Davis BJ et al. Anti-atherosclerotic and renoprotective effects of combined angiotensin-converting enzyme and neutral endopeptidase inhibition in diabetic apolipoprotein E-knockout mice. J. Hypertens.23(11), 2071–2082 (2005).
  • Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE. Expression of AT2 receptors in the developing rat fetus. J. Clin. Invest.88(3), 921–933 (1991).
  • Sadoshima J. Cytokine actions of angiotensin II. Circ. Res.86(12), 1187–1189 (2000).
  • Pinaud F, Bocquet A, Dumont O et al. Paradoxical role of angiotensin II type 2 receptors in resistance arteries of old rats. Hypertension50(1), 96–102 (2007).
  • Levy BI. Can angiotensin II type 2 receptors have deleterious effects in cardiovascular disease? Implications for therapeutic blockade of the renin–angiotensin system. Circulation109(1), 8–13 (2004).
  • Senbonmatsu T, Saito T, Landon EJ et al. A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J.22(24), 6471–6482 (2003).
  • D’Amore A, Black MJ, Thomas WG. The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy. Hypertension46(6), 1347–1354 (2005).
  • Waseda Y, Yasui M, Nishizawa Y et al. Angiotensin II type 2 receptor antagonist reduces bleomycin-induced pulmonary fibrosis in mice. Respir. Res.9, 43 (2008).
  • Kaschina E, Grzesiak A, Li J et al. Angiotensin II type 2 receptor stimulation: a novel option of therapeutic interference with the renin–angiotensin system in myocardial infarction? Circulation118(24), 2523–2532 (2008).
  • Soro-Paavonen A, Watson AM, Li J et al. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes57(9), 2461–2469 (2008).
  • Koitka A, Cao Z, Koh P et al. Angiotensin II subtype 2 receptor blockade and deficiency attenuate the development of atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes. Diabetologia53(3), 584–592 (2010).
  • Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care19(3), 257–267 (1996).
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature414(6865), 813–820 (2001).
  • Kiritoshi S, Nishikawa T, Sonoda K et al. Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes52(10), 2570–2577 (2003).
  • Ceriello A, Dello Russo P, Amstad P, Cerutti P. High glucose induces antioxidant enzymes in human endothelial cells in culture; evidence linking hyperglycemia and oxidative stress. Diabetes45(4), 471–477 (1996).
  • Guzik TJ, Harrison DG. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov. Today11(11–12), 524–533 (2006).
  • Tousoulis D, Antoniades C, Koumallos N et al. Novel therapies targeting vascular endothelium. Endothelium13(6), 411–421 (2006).
  • Da Ros R, Assaloni R, Ceriello A. Antioxidant therapy in diabetic complications: what is new? Curr. Vasc. Pharmacol.2(4), 335–341 (2004).
  • Lee IM, Cook NR, Gaziano JM et al. Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women’s Health Study: a randomized controlled trial. JAMA294(1), 56–65 (2005).
  • Sesso HD, Buring JE, Christen WG et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA300(18), 2123–2133 (2008).
  • Marchioli R, Levantesi G, Macchia A et al. Vitamin E increases the risk of developing heart failure after myocardial infarction: results from the GISSI-Prevenzione trial. J. Cardiovasc. Med.7(5), 347–350 (2006).
  • Stocker R. The ambivalence of vitamin E in atherogenesis. Trends Biochem. Sci.24(6), 219–223 (1999).
  • Thomas SR, Stocker R. Molecular action of vitamin E in lipoprotein oxidation: implications for atherosclerosis. Free Radic. Biol. Med.28(12), 1795–1805 (2000).
  • Graham D, Huynh NN, Hamilton CA et al. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension54(2), 322–328 (2009).
  • Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed. Pharmacother.59(7), 365–373 (2005).
  • Lewis P, Stefanovic N, Pete J et al. Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation115(16), 2178–2187 (2007).
  • Torzewski M, Ochsenhirt V, Kleschyov AL et al. Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol.27(4), 850–857 (2007).
  • Blankenberg S, Rupprecht HJ, Bickel C et al. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N. Engl. J. Med.349(17), 1605–1613 (2003).
  • Hamanishi T, Furuta H, Kato H et al. Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima–media thickness of carotid arteries and risk of macrovascular diseases in Japanese Type 2 diabetic patients. Diabetes53(9), 2455–2460 (2004).
  • Winter JP, Gong Y, Grant PJ, Wild CP. Glutathione peroxidase 1 genotype is associated with an increased risk of coronary artery disease. Coron. Artery Dis.14(2), 149–153 (2003).
  • Koller LD, Exon JH. The two faces of selenium-deficiency and toxicity are similar in animals and man. Can. J. Vet. Res.50(3), 297–306 (1986).
  • Allan CB, Lacourciere GM, Stadtman TC. Responsiveness of selenoproteins to dietary selenium. Annu. Rev. Nutr.19, 1–16 (1999).
  • Bhabak KP, Mugesh G. Synthesis, characterization, and antioxidant activity of some ebselen analogues. Chemistry13(16), 4594–4601 (2007).
  • Sies H. Ebselen. A selenoorganic compound as glutathione peroxidase mimic. Free Radic. Biol. Med.14(3), 313–323 (1993).
  • Sui H, Wang W, Wang PH, Liu LS. Effect of glutathione peroxidase mimic ebselen (PZ51) on endothelium and vascular structure of stroke-prone spontaneously hypertensive rats. Blood Press.14(6), 366–372 (2005).
  • Davis MT, Bartfay WJ. Ebselen decreases oxygen free radical production and iron concentrations in the hearts of chronically iron-overloaded mice. Biol. Res. Nurs.6(1), 37–45 (2004).
  • Sies H, Masumoto H. Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv. Pharmacol.38, 229–246 (1997).
  • Chew P, Yuen DY, Koh P et al. Site-specific antiatherogenic effect of the antioxidant ebselen in the diabetic apolipoprotein E-deficient mouse. Arterioscler. Thromb. Vasc. Biol.29(6), 823–830 (2009).
  • Chew P, Yuen DY, Stefanovic N et al. Antiatherosclerotic and renoprotective effects of ebselen in the diabetic apolipoprotein E/GPx1-double knockout mouse. Diabetes59(12), 3198–3207 (2010).
  • Brodsky SV, Gealekman O, Chen J et al. Prevention and reversal of premature endothelial cell senescence and vasculopathy in obesity-induced diabetes by ebselen. Circ. Res.94(3), 377–384 (2004).
  • Khatri JJ, Johnson C, Magid R et al. Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma. Circulation109(4), 520–525 (2004).
  • Hort MA, Straliotto MR, Netto PM, Da Rocha JB, De Bem AF, Ribeiro-Do-Valle RM. Diphenyl diselenide effectively reduces atherosclerotic lesions in LDLR -/- mice by attenuation of oxidative stress and inflammation. J. Cardiovasc. Pharmacol.58(1), 91–101 (2011).
  • Sarma BK, Mugesh G. Glutathione peroxidase (GPx)-like antioxidant activity of the organoselenium drug ebselen: unexpected complications with thiol exchange reactions. J. Am. Chem. Soc.127(32), 11477–11485 (2005).
  • Yamaguchi T, Sano K, Takakura K et al. Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke29(1), 12–17 (1998).
  • Schiele F. Renal dysfunction and coronary disease: a high-risk combination. J. Nephrol.22(1), 39–45 (2009).
  • Okamura DM, Himmelfarb J. Tipping the redox balance of oxidative stress in fibrogenic pathways in chronic kidney disease. Pediatr. Nephrol.24(12), 2309–2319 (2009).
  • Chander PN, Gealekman O, Brodsky SV et al. Nephropathy in Zucker diabetic fat rat is associated with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger ebselen. J. Am. Soc. Nephrol.15(9), 2391–2403 (2004).
  • Yoshizumi M, Kogame T, Suzaki Y et al. Ebselen attenuates oxidative stress-induced apoptosis via the inhibition of the c-Jun N-terminal kinase and activator protein-1 signalling pathway in PC12 cells. Br. J. Pharmacol.136(7), 1023–1032 (2002).
  • Yoshizumi M, Fujita Y, Izawa Y et al. Ebselen inhibits tumor necrosis factor-alpha-induced c-Jun N-terminal kinase activation and adhesion molecule expression in endothelial cells. Exp. Cell Res.292(1), 1–10 (2004).
  • Ali N, Yoshizumi M, Tsuchiya K et al. Ebselen inhibits p38 mitogen-activated protein kinase-mediated endothelial cell death by hydrogen peroxide. Eur. J. Pharmacol.485(1–3), 127–135 (2004).
  • Sarker KP, Biswas KK, Rosales JL et al. Ebselen inhibits NO-induced apoptosis of differentiated PC12 cells via inhibition of ASK1-p38 MAPK-p53 and JNK signaling and activation of p44/42 MAPK and Bcl-2. J. Neurochem.87(6), 1345–1353 (2003).
  • Abe J, Berk BC. Reactive oxygen species as mediators of signal transduction in cardiovascular disease. Trends Cardiovasc. Med.8(2), 59–64 (1998).
  • Bu DX, Rai V, Shen X et al. Activation of the ROCK1 branch of the transforming growth factor-beta pathway contributes to RAGE-dependent acceleration of atherosclerosis in diabetic ApoE-null mice. Circ. Res.106(6), 1040–1051 (2010).
  • Park L, Raman KG, Lee KJ et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat. Med.4(9), 1025–1031 (1998).
  • Kislinger T, Tanji N, Wendt T et al. Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol.21(6), 905–910 (2001).
  • Schleicher E, Friess U. Oxidative stress, AGE, and atherosclerosis. Kidney Int. Suppl.106, S17–S26 (2007).
  • Forbes JM, Yee LT, Thallas V et al. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes53(7), 1813–1823 (2004).
  • Candido R, Forbes JM, Thomas MC et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ. Res.92(7), 785–792 (2003).
  • Ueno H, Koyama H, Shoji T et al. Receptor for advanced glycation end-products (RAGE) regulation of adiposity and adiponectin is associated with atherogenesis in ApoE-deficient mouse. Atherosclerosis211(2), 431–436 (2010).
  • Wendt T, Harja E, Bucciarelli L et al. RAGE modulates vascular inflammation and atherosclerosis in a murine model of Type 2 diabetes. Atherosclerosis185(1), 70–77 (2006).
  • Harja E, Bu DX, Hudson BI et al. Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in ApoE-/- mice. J. Clin. Invest.118(1), 183–194 (2008).
  • Sun L, Ishida T, Yasuda T et al. RAGE mediates oxidized LDL-induced pro-inflammatory effects and atherosclerosis in non-diabetic LDL receptor-deficient mice. Cardiovasc. Res.82(2), 371–381 (2009).
  • Sakaguchi T, Yan SF, Yan SD et al. Central role of RAGE-dependent neointimal expansion in arterial restenosis. J. Clin. Invest.111(7), 959–972 (2003).
  • Zhou Z, Wang K, Penn MS et al. Receptor for AGE (RAGE) mediates neointimal formation in response to arterial injury. Circulation107(17), 2238–2243 (2003).
  • Bucciarelli LG, Wendt T, Qu W et al. RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation106(22), 2827–2835 (2002).
  • Al-Mesallamy HO, Hammad LN, El-Mamoun TA, Khalil BM. Role of advanced glycation end product receptors in the pathogenesis of diabetic retinopathy. J. Diabetes Complications25(3), 168–174 (2011).
  • Katakami N, Matsuhisa M, Kaneto H et al. Decreased endogenous secretory advanced glycation end product receptor in Type 1 diabetic patients: its possible association with diabetic vascular complications. Diabetes Care28(11), 2716–2721 (2005).
  • Srikanth V, Maczurek A, Phan T et al. Advanced glycation end products and their receptor RAGE in Alzheimer’s disease. Neurobiol. Aging.32(5), 763–777 (2011).
  • Goh SY, Cooper ME. Clinical review: the role of advanced glycation end products in progression and complications of diabetes. J. Clin. Endocrinol. Metab.93(4), 1143–1152 (2008).
  • Oozawa S, Mori S, Kanke T et al. Effects of HMGB1 on ischemia–reperfusion injury in the rat heart. Circ. J.72(7), 1178–1184 (2008).
  • Fiuza C, Bustin M, Talwar S et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood101(7), 2652–2660 (2003).
  • Bianchi ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol. Rev.220, 35–46 (2007).
  • Yang H, Ochani M, Li J et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl Acad. Sci. USA101(1), 296–301 (2004).
  • Mosevitsky MI, Novitskaya VA, Iogannsen MG, Zabezhinsky MA. Tissue specificity of nucleo-cytoplasmic distribution of HMG1 and HMG2 proteins and their probable functions. Eur. J. Biochem.185(2), 303–310 (1989).
  • Kalinina N, Agrotis A, Antropova Y et al. Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: role of activated macrophages and cytokines. Arterioscler. Thromb. Vasc. Biol.24(12), 2320–2325 (2004).
  • Inoue K, Kawahara K, Biswas KK et al. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovasc. Pathol.16(3), 136–143 (2007).
  • Yan XX, Lu L, Peng WH et al. Increased serum HMGB1 level is associated with coronary artery disease in nondiabetic and Type 2 diabetic patients. Atherosclerosis205(2), 544–548 (2009).
  • Hu X, Jiang H, Bai Q et al. Increased serum HMGB1 is related to the severity of coronary artery stenosis. Clin. Chim. Acta.406(1–2), 139–142 (2009).
  • Kanellakis P, Agrotis A, Kyaw TS et al. High-mobility group box protein 1 neutralization reduces development of diet-induced atherosclerosis in apolipoprotein e-deficient mice. Arterioscler. Thromb. Vasc. Biol.31(2), 313–319 (2011).
  • Volz HC, Seidel C, Laohachewin D et al. HMGB1: the missing link between diabetes mellitus and heart failure. Basic Res. Cardiol.105(6), 805–820 (2010).
  • Branco-Madeira F, Lambrecht BN. High mobility group box-1 recognition: the beginning of a RAGEless era? EMBO Mol. Med.2(6), 193–195 (2010).
  • Bianchi ME. HMGB1 loves company. J. Leukoc. Biol.86(3), 573–576 (2009).
  • Kim J, Sohn E, Kim CS, Jo K, Kim JS. The role of high-mobility group box-1 protein in the development of diabetic nephropathy. Am. J. Nephrol.33(6), 524–529 (2011).
  • Hagiwara S, Iwasaka H, Hasegawa A, Koga H, Noguchi T. Effects of hyperglycemia and insulin therapy on high mobility group box 1 in endotoxin-induced acute lung injury in a rat model. Crit. Care Med.36(8), 2407–2413 (2008).
  • Dasu MR, Devaraj S, Park S, Jialal I. Increased Toll-like receptor (TLR) activation and TLR ligands in recently diagnosed Type 2 diabetic subjects. Diabetes Care33(4), 861–868 (2010).
  • Pachydaki SI, Tari SR, Lee SE et al. Upregulation of RAGE and its ligands in proliferative retinal disease. Exp. Eye Res.82(5), 807–815 (2006).
  • Onan D, Hannan RD, Thomas WG. Urotensin II: the old kid in town. Trends Endocrinol. Metab.15(4), 175–182 (2004).
  • Onan D, Pipolo L, Yang E, Hannan RD, Thomas WG. Urotensin II promotes hypertrophy of cardiac myocytes via mitogen-activated protein kinases. Mol. Endocrinol.18(9), 2344–2354 (2004).
  • Pearson D, Shively JE, Clark BR et al. Urotensin II: a somatostatin-like peptide in the caudal neurosecretory system of fishes. Proc. Natl Acad. Sci. USA77(8), 5021–5024 (1980).
  • Coulouarn Y, Jegou S, Tostivint H, Vaudry H, Lihrmann I. Cloning, sequence analysis and tissue distribution of the mouse and rat urotensin II precursors. FEBS Lett.457(1), 28–32 (1999).
  • Mori H, Matsunaga K, Tanakamaru Y et al. Effects of protocatechuic acid, S-methylmethanethiosulfonate or 5-hydroxy-4-(2-phenyl-(E)ethenyl)-2(5H)-furanone(KYN-54) on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced pulmonary carcinogenesis in mice. Cancer Lett.135(2), 123–127 (1999).
  • Itoh H, Mcmaster D, Lederis K. Functional receptors for fish neuropeptide urotensin II in major rat arteries. Eur. J. Pharmacol.149(1–2), 61–66 (1988).
  • Wang ZJ, Shi LB, Xiong ZW et al. Alteration of vascular urotensin II receptor in mice with apolipoprotein E gene knockout. Peptides27(4), 858–863 (2006).
  • Bousette N, Patel L, Douglas SA, Ohlstein EH, Giaid A. Increased expression of urotensin II and its cognate receptor GPR14 in atherosclerotic lesions of the human aorta. Atherosclerosis176(1), 117–123 (2004).
  • Maguire JJ, Kuc RE, Wiley KE, Kleinz MJ, Davenport AP. Cellular distribution of immunoreactive urotensin-II in human tissues with evidence of increased expression in atherosclerosis and a greater constrictor response of small compared to large coronary arteries. Peptides25(10), 1767–1774 (2004).
  • Ames RS, Sarau HM, Chambers JK et al. Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature401(6750), 282–286 (1999).
  • Totsune K, Takahashi K, Arihara Z et al. Elevated plasma levels of immunoreactive urotensin II and its increased urinary excretion in patients with Type 2 diabetes mellitus: association with progress of diabetic nephropathy. Peptides25(10), 1809–1814 (2004).
  • Suguro T, Watanabe T, Kodate S et al. Increased plasma urotensin-II levels are associated with diabetic retinopathy and carotid atherosclerosis in Type 2 diabetes. Clin. Sci. (Lond.)115(11), 327–334 (2008).
  • Wassef L, Langham RG, Kelly DJ. Vasoactive renal factors and the progression of diabetic nephropathy. Curr. Pharm. Des.10(27), 3373–3384 (2004).
  • Papadopoulos P, Bousette N, Al-Ramli W et al. Targeted overexpression of the human urotensin receptor transgene in smooth muscle cells: effect of UT antagonism in ApoE knockout mice fed with Western diet. Atherosclerosis204(2), 395–404 (2009).
  • Jay MA, Ren J. Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and Type 2 diabetes mellitus. Curr. Diabetes Rev.3(1), 33–39 (2007).
  • Calkin AC, Forbes JM, Smith CM et al. Rosiglitazone attenuates atherosclerosis in a model of insulin insufficiency independent of its metabolic effects. Arterioscler. Thromb. Vasc. Biol.25(9), 1903–1909 (2005).
  • Home PD, Pocock SJ, Beck-Nielsen H et al. Rosiglitazone evaluated for cardiovascular outcomes – an interim analysis. N. Engl. J. Med.357(1), 28–38 (2007).
  • Nissen SE, Nicholls SJ, Wolski K et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with Type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA299(13), 1561–1573 (2008).
  • Charbonnel B, Dormandy J, Erdmann E, Massi-Benedetti M, Skene A. The prospective pioglitazone clinical trial in macrovascular events (PROactive): can pioglitazone reduce cardiovascular events in diabetes? Study design and baseline characteristics of 5238 patients. Diabetes Care27(7), 1647–1653 (2004).
  • Rizos CV, Elisaf MS, Mikhailidis DP, Liberopoulos EN. How safe is the use of thiazolidinediones in clinical practice? Expert Opin. Drug Saf.8(1), 15–32 (2009).
  • Calkin AC, Cooper ME, Jandeleit-Dahm KA, Allen TJ. Gemfibrozil decreases atherosclerosis in experimental diabetes in association with a reduction in oxidative stress and inflammation. Diabetologia49(4), 766–774 (2006).
  • Keech A, Simes RJ, Barter P et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with Type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet366(9500), 1849–1861 (2005).
  • Buse JB, Bigger JT, Byington RP et al.; ACCORD Study Group. Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial: design and methods. Am. J. Cardiol.99(12A), 21i–33i (2007).
  • Dicembrini I, Pala L, Rotella CM. From theory to clinical practice in the use of GLP-1 receptor agonists and DPP-4 inhibitors therapy. Exp. Diabetes Res.898913 (2011).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.