38
Views
1
CrossRef citations to date
0
Altmetric
Special Report

Update on the endocannabinoid-mediated regulation of gelatinase release in arterial wall physiology and atherosclerotic pathophysiology

, , , &
Pages 1481-1486 | Published online: 10 Jan 2014

References

  • Welgus HG, Campbell EJ, Cury JD et al. Neutral metalloproteinases produced by human mononuclear phagocytes. Enzyme profile, regulation, and expression during cellular development. J. Clin. Invest. 86(5), 1496–1502 (1990).
  • Lenglet S, Thomas A, Chaurand P, Galan K, Mach F, Montecucco F. Molecular imaging of matrix metalloproteinases in atherosclerotic plaques. Thromb. Haemost. 107(3), 409–416 (2012).
  • Vuilleumier N, Bas S, Pagano S et al. Anti-apolipoprotein A-1 IgG predicts major cardiovascular events in patients with rheumatoid arthritis. Arthritis Rheum. 62(9), 2640–2650 (2010).
  • Muroski ME, Roycik MD, Newcomer RG et al. Matrix metalloproteinase-9/gelatinase B is a putative therapeutic target of chronic obstructive pulmonary disease and multiple sclerosis. Curr. Pharm. Biotechnol. 9(1), 34–46 (2008).
  • Bauvois B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochim. Biophys. Acta 1825(1), 29–36 (2012).
  • Newby AC. Matrix metalloproteinase inhibition therapy for vascular diseases. Vascul. Pharmacol. 56(5–6), 232–244 (2012).
  • Ketelhuth DF, Bäck M. The role of matrix metalloproteinases in atherothrombosis. Curr. Atheroscler. Rep. 13(2), 162–169 (2011).
  • Montecucco F, Vuilleumier N, Pagano S et al. Anti-apolipoprotein A-1 auto-antibodies are active mediators of atherosclerotic plaque vulnerability. Eur. Heart J. 32(4), 412–421 (2011).
  • De Petrocellis L, Cascio MG, Di Marzo V. The endocannabinoid system: a general view and latest additions. Br. J. Pharmacol. 141(5), 765–774 (2004).
  • Montecucco F, Di Marzo V, da Silva RF et al. The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques. Eur. Heart J. 33(7), 846–856 (2012).
  • Montecucco F, Matias I, Lenglet S et al. Regulation and possible role of endocannabinoids and related mediators in hypercholesterolemic mice with atherosclerosis. Atherosclerosis 205(2), 433–441 (2009).
  • Sugamura K, Sugiyama S, Nozaki T et al. Activated endocannabinoid system in coronary artery disease and antiinflammatory effects of cannabinoid 1 receptor blockade on macrophages. Circulation 119(1), 28–36 (2009).
  • Bonz A, Laser M, Küllmer S et al. Cannabinoids acting on CB1 receptors decrease contractile performance in human atrial muscle. J. Cardiovasc. Pharmacol. 41(4), 657–664 (2003).
  • Bátkai S, Pacher P, Osei-Hyiaman D et al. Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation 110(14), 1996–2002 (2004).
  • Mukhopadhyay P, Bátkai S, Rajesh M et al. Pharmacological inhibition of CB1 cannabinoid receptor protects against doxorubicin-induced cardiotoxicity. J. Am. Coll. Cardiol. 50(6), 528–536 (2007).
  • Osei-Hyiaman D, DePetrillo M, Pacher P et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J. Clin. Invest. 115(5), 1298–1305 (2005).
  • Engeli S, Böhnke J, Feldpausch M et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes 54(10), 2838–2843 (2005).
  • Mallat A, Lotersztajn S. Endocannabinoids and liver disease. I. Endocannabinoids and their receptors in the liver. Am. J. Physiol. Gastrointest. Liver Physiol. 294(1), G9–G12 (2008).
  • Pacher P, Steffens S. The emerging role of the endocannabinoid system in cardiovascular disease. Semin. Immunopathol. 31(1), 63–77 (2009).
  • Randall MD. Endocannabinoids and the haematological system. Br. J. Pharmacol. 152(5), 671–675 (2007).
  • Van Sickle MD, Duncan M, Kingsley PJ et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310(5746), 329–332 (2005).
  • Pacher P, Gao B. Endocannabinoids and liver disease. III. Endocannabinoid effects on immune cells: implications for inflammatory liver diseases. Am. J. Physiol. Gastrointest. Liver Physiol. 294(4), G850–G854 (2008).
  • Rajesh M, Mukhopadhyay P, Bátkai S et al. CB2-receptor stimulation attenuates TNF-α-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am. J. Physiol. Heart Circ. Physiol. 293(4), H2210–H2218 (2007).
  • Rajesh M, Mukhopadhyay P, Haskó G, Huffman JW, Mackie K, Pacher P. CB2 cannabinoid receptor agonists attenuate TNF-α-induced human vascular smooth muscle cell proliferation and migration. Br. J. Pharmacol. 153(2), 347–357 (2008).
  • Quercioli A, Pataky Z, Vincenti G et al. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. Eur. Heart J. 32(11), 1369–1378 (2011).
  • Járai Z, Wagner JA, Varga K et al. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proc. Natl Acad. Sci. USA 96(24), 14136–14141 (1999).
  • O’Sullivan SE, Kendall DA, Randall MD. Heterogeneity in the mechanisms of vasorelaxation to anandamide in resistance and conduit rat mesenteric arteries. Br. J. Pharmacol. 142(3), 435–442 (2004).
  • Herradón E, Martín MI, López-Miranda V. Characterization of the vasorelaxant mechanisms of the endocannabinoid anandamide in rat aorta. Br. J. Pharmacol. 152(5), 699–708 (2007).
  • Mukhopadhyay S, Chapnick BM, Howlett AC. Anandamide-induced vasorelaxation in rabbit aortic rings has two components: G protein dependent and independent. Am. J. Physiol. Heart Circ. Physiol. 282(6), H2046–H2054 (2002).
  • Wagner JA, Varga K, Járai Z, Kunos G. Mesenteric vasodilation mediated by endothelial anandamide receptors. Hypertension 33(1 Pt 2), 429–434 (1999).
  • McCollum L, Howlett AC, Mukhopadhyay S. Anandamide-mediated CB1/CB2 cannabinoid receptor–independent nitric oxide production in rabbit aortic endothelial cells. J. Pharmacol. Exp. Ther. 321(3), 930–937 (2007).
  • Montecucco F, Di Marzo V. At the heart of the matter: the endocannabinoid system in cardiovascular function and dysfunction. Trends Pharmacol. Sci. 33(6), 331–340 (2012).
  • Zygmunt PM, Petersson J, Andersson DA et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400(6743), 452–457 (1999).
  • Ralevic V, Kendall DA, Randall MD, Zygmunt PM, Movahed P, Högestätt ED. Vanilloid receptors on capsaicin-sensitive sensory nerves mediate relaxation to methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arteries. Br. J. Pharmacol. 130(7), 1483–1488 (2000).
  • Fernandez-Patron C, Stewart KG, Zhang Y, Koivunen E, Radomski MW, Davidge ST. Vascular matrix metalloproteinase-2-dependent cleavage of calcitonin gene-related peptide promotes vasoconstriction. Circ. Res. 87(8), 670–676 (2000).
  • Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem. Pharmacol. 75(2), 346–359 (2008).
  • Carmeliet P. Angiogenesis in health and disease. Nat. Med. 9(6), 653–660 (2003).
  • Risau W. Mechanisms of angiogenesis. Nature 386(6626), 671–674 (1997).
  • Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem. Sci. 22(7), 251–256 (1997).
  • Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 21(7), 1104–1117 (2001).
  • De Filippis D, Russo A, De Stefano D et al. Local administration of WIN 55,212-2 reduces chronic granuloma-associated angiogenesis in rat by inhibiting NF-κB activation. J. Mol. Med. (Berl.) 85(6), 635–645 (2007).
  • Portella G, Laezza C, Laccetti P, De Petrocellis L, Di Marzo V, Bifulco M. Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. FASEB J. 17(12), 1771–1773 (2003).
  • Casanova ML, Blázquez C, Martínez-Palacio J et al. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J. Clin. Invest. 111(1), 43–50 (2003).
  • Blazquez C, Casanova ML, Planas A et al. Inhibition of tumor angiogenesis by cannabinoids. FASEB J. 17(3), 529–531 (2003).
  • Pisanti S, Picardi P, Prota L et al. Genetic and pharmacologic inactivation of cannabinoid CB1 receptor inhibits angiogenesis. Blood 117(20), 5541–5550 (2011).
  • Blázquez C, Salazar M, Carracedo A et al. Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. Cancer Res. 68(6), 1945–1952 (2008).
  • Ramer R, Hinz B. Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J. Natl Cancer Inst. 100(1), 59–69 (2008).
  • Ramer R, Merkord J, Rohde H, Hinz B. Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1. Biochem. Pharmacol. 79(7), 955–966 (2010).
  • Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 85(1), 1–31 (2005).
  • Johnson C, Galis ZS. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization. Arterioscler. Thromb. Vasc. Biol. 24(1), 54–60 (2004).
  • Johnson JL, Dwivedi A, Somerville M, George SJ, Newby AC. Matrix metalloproteinase (MMP)-3 activates MMP-9 mediated vascular smooth muscle cell migration and neointima formation in mice. Arterioscler. Thromb. Vasc. Biol. 31(9), e35–e44 (2011).
  • Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Invest. 94(6), 2493–2503 (1994).
  • Jones CB, Sane DC, Herrington DM. Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc. Res. 59(4), 812–823 (2003).
  • Blankenberg S, Rupprecht HJ, Poirier O et al.; AtheroGene Investigators. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 107(12), 1579–1585 (2003).
  • Netherland CD, Pickle TG, Bales A, Thewke DP. Cannabinoid receptor type 2 (CB2) deficiency alters atherosclerotic lesion formation in hyperlipidemic Ldlr-null mice. Atherosclerosis 213(1), 102–108 (2010).
  • Rosenstock J, Hollander P, Chevalier S, Iranmanesh A; SERENADE Study Group. SERENADE: the Study Evaluating Rimonabant Efficacy in Drug-naive Diabetic Patients: effects of monotherapy with rimonabant, the first selective CB1 receptor antagonist, on glycemic control, body weight, and lipid profile in drug-naive Type 2 diabetes. Diabetes Care 31(11), 2169–2176 (2008).
  • Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J; RIO-North America Study Group. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295(7), 761–775 (2006).
  • Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rössner S; RIO-Europe Study Group. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365(9468), 1389–1397 (2005).
  • Topol EJ, Bousser MG, Fox KA et al.; CRESCENDO Investigators. Rimonabant for prevention of cardiovascular events (CRESCENDO): a randomised, multicentre, placebo-controlled trial. Lancet 376(9740), 517–523 (2010).
  • Hoyer FF, Steinmetz M, Zimmer S et al. Atheroprotection via cannabinoid receptor-2 is mediated by circulating and vascular cells in vivo. J. Mol. Cell. Cardiol. 51(6), 1007–1014 (2011).
  • Willecke F, Zeschky K, Ortiz Rodriguez A et al. Cannabinoid receptor 2 signaling does not modulate atherogenesis in mice. PLoS ONE 6(4), e19405 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.