131
Views
22
CrossRef citations to date
0
Altmetric
Special Report

Iterative image reconstruction: a realistic dose-saving method in cardiac CT imaging?

, , , , &
Pages 403-409 | Published online: 10 Jan 2014

References

  • Ziegler A, Köhler T, Proksa R. Noise and resolution in images reconstructed with FBP and OSC algorithms for CT. Med. Phys. 34(2), 585–598 (2007).
  • Thibault JB, Sauer KD, Bouman CA, Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med. Phys. 34(11), 4526–4544 (2007).
  • Brooks RA, Di Chiro G. Theory of image reconstruction in computed tomography. Radiology 117(3 Pt 1), 561–572 (1975).
  • Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N. Engl. J. Med. 357(22), 2277–2284 (2007).
  • Achenbach S, Marwan M, Schepis T et al. High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J. Cardiovasc. Comput. Tomogr. 3(2), 117–121 (2009).
  • Hausleiter J, Martinoff S, Hadamitzky M et al. Image quality and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the PROTECTION II trial. JACC Cardiovasc. Imaging 3(11), 1113–1123 (2010).
  • Stolzmann P, Leschka S, Scheffel H et al. Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249(1), 71–80 (2008).
  • Weustink AC, Mollet NR, Pugliese F et al. Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248(3), 792–798 (2008).
  • Jakobs TF, Becker CR, Ohnesorge B et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur. Radiol. 12(5), 1081–1086 (2002).
  • Nelson RC, Feuerlein S, Boll DT. New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages? J. Cardiovasc. Comput. Tomogr. 5(5), 286–292 (2011).
  • Raff GL. Radiation dose from coronary CT angiography: five years of progress. J. Cardiovasc. Comput. Tomogr. 4(6), 365–374 (2010).
  • Leipsic J, Heilbron BG, Hague C. Iterative reconstruction for coronary CT angiography: finding its way. Int. J. Cardiovasc. Imaging 28(3), 613–620 (2012).
  • Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in x-ray CT. Phys. Med. 28(2), 94–108 (2012).
  • Prakash P, Kalra MK, Digumarthy SR et al. Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J. Comput. Assist. Tomogr. 34(1), 40–45 (2010).
  • Bittencourt MS, Schmidt B, Seltmann M et al. Iterative reconstruction in image space (IRIS) in cardiac computed tomography: initial experience. Int. J. Cardiovasc. Imaging 27(7), 1081–1087 (2011).
  • Leipsic J, Labounty TM, Heilbron B et al. Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am. J. Roentgenol. 195(3), 649–654 (2010).
  • Pontana F, Pagniez J, Flohr T et al. Chest computed tomography using iterative reconstruction vs filtered back projection (part 1): evaluation of image noise reduction in 32 patients. Eur. Radiol. 21(3), 627–635 (2011).
  • Ghetti C, Ortenzia O, Serreli G. CT iterative reconstruction in image space: a phantom study. Phys. Med. 28(2), 161–165 (2012).
  • Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am. J. Roentgenol. 193(3), 764–771 (2009).
  • Sagara Y, Hara AK, Pavlicek W, Silva AC, Paden RG, Wu Q. Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients. AJR Am. J. Roentgenol. 195(3), 713–719 (2010).
  • Niu YT, Mehta D, Zhang ZR et al. Radiation dose reduction in temporal bone CT with iterative reconstruction technique. AJNR Am. J. Neuroradiol. 33(6), 1020–1026 (2012).
  • Ren Q, Dewan SK, Li M et al. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT. Eur. J. Radiol. 81(10), 2597–2601 (2012).
  • Singh S, Kalra MK, Gilman MD et al. Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology 259(2), 565–573 (2011).
  • May MS, Wüst W, Brand M et al. Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography. Invest. Radiol. 46(7), 465–470 (2011).
  • Winklehner A, Karlo C, Puippe G et al. Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur. Radiol. 21(12), 2521–2526 (2011).
  • Singh S, Kalra MK, Shenoy-Bhangle AS et al. Radiation dose reduction with hybrid iterative reconstruction for pediatric CT. Radiology 263(2), 537–546 (2012).
  • Leipsic J, Labounty TM, Heilbron B et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR. Am. J. Roentgenol. 195(3), 655–660 (2010).
  • Leipsic J, Nguyen G, Brown J, Sin D, Mayo JR. A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR. Am. J. Roentgenol. 195(5), 1095–1099 (2010).
  • Renker M, Ramachandra A, Schoepf UJ et al. Iterative image reconstruction techniques: applications for cardiac CT. J. Cardiovasc. Comput. Tomogr. 5(4), 225–230 (2011).
  • Hou Y, Liu X, Xv S, Guo W, Guo Q. Comparisons of image quality and radiation dose between iterative reconstruction and filtered back projection reconstruction algorithms in 256-MDCT coronary angiography. AJR Am. J. Roentgenol. 199(3), 588–594 (2012).
  • Hou Y, Xu S, Guo W, Vembar M, Guo Q. The optimal dose reduction level using iterative reconstruction with prospective ECG-triggered coronary CTA using 256-slice MDCT. Eur. J. Radiol. 81(12) 3905–3911(2012).
  • Park EA, Lee W, Kim KW et al. Iterative reconstruction of dual-source coronary CT angiography: assessment of image quality and radiation dose. Int. J. Cardiovasc. Imaging 28(7), 1775–1786 (2012).
  • Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295(13), 1549–1555 (2006).
  • Marques MD, Santos RD, Parga JR et al. Relation between visceral fat and coronary artery disease evaluated by multidetector computed tomography. Atherosclerosis 209(2), 481–486 (2010).
  • Lubanski MS, Vanhecke TE, Chinnaiyan KM, Franklin BA, McCullough PA. Subclinical coronary atherosclerosis identified by coronary computed tomographic angiography in asymptomatic morbidly obese patients. Heart Int. 5(2), e15 (2010).
  • Leschka S, Stinn B, Schmid F et al. Dual source CT coronary angiography in severely obese patients: trading off temporal resolution and image noise. Invest. Radiol. 44(11), 720–727 (2009).
  • Alkadhi H, Stolzmann P, Scheffel H et al. Radiation dose of cardiac dual-source CT: the effect of tailoring the protocol to patient-specific parameters. Eur. J. Radiol. 68(3), 385–391 (2008).
  • Paul NS, Kashani H, Odedra D, Ursani A, Ray C, Rogalla P. The influence of chest wall tissue composition in determining image noise during cardiac CT. AJR. Am. J. Roentgenol. 197(6), 1328–1334 (2011).
  • Hosch W, Stiller W, Mueller D et al. Reduction of radiation exposure and improvement of image quality with BMI-adapted prospective cardiac computed tomography and iterative reconstruction. Eur. J. Radiol. 81(11), 3568–3576 (2012).
  • Yoo RE, Park EA, Lee W et al. Image quality of adaptive iterative dose reduction 3D of coronary CT angiography of 640-slice CT: comparison with filtered back-projection. Int. J. Cardiovasc. Imaging doi:10.1007/s10554-012-0113-6 (2012) (Epub ahead of print).
  • Takx RA, Schoepf UJ, Moscariello A et al. Coronary CT angiography: comparison of a novel iterative reconstruction with filtered back projection for reconstruction of low-dose CT – initial experience. Eur. J. Radiol. 82(2), 275–280 (2013).
  • Leber AW, Knez A, von Ziegler F et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J. Am. Coll. Cardiol. 46(1), 147–154 (2005).
  • Brodoefel H, Burgstahler C, Tsiflikas I et al. Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology 247(2), 346–355 (2008).
  • Renker M, Nance JW Jr, Schoepf UJ et al. Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology 260(2), 390–399 (2011).
  • Min JK, Swaminathan RV, Vass M, Gallagher S, Weinsaft JW. High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography. J. Cardiovasc. Comput. Tomogr. 3(4), 246–251 (2009).
  • Moscariello A, Takx RA, Schoepf UJ et al. Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique – comparison with traditional filtered back projection. Eur. Radiol. 21(10), 2130–2138 (2011).
  • Han BK, Grant KL, Garberich R, Sedlmair M, Lindberg J, Lesser JR. Assessment of an iterative reconstruction algorithm (SAFIRE) on image quality in pediatric cardiac CT datasets. J. Cardiovasc. Comput. Tomogr. 6(3), 200–204 (2012).
  • Ebersberger U, Eilot D, Goldenberg R et al. Fully automated derivation of coronary artery calcium scores and cardiovascular risk assessment from contrast medium-enhanced coronary CT angiography studies. Eur. Radiol. 23(3), 650–657 (2013).
  • Scheffel H, Stolzmann P, Schlett CL et al. Coronary artery plaques: cardiac CT with model-based and adaptive-statistical iterative reconstruction technique. Eur. J. Radiol. 81(3), e363–e369 (2012).
  • Suzuki S, Machida H, Tanaka I, Ueno E. Measurement of vascular wall attenuation: comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro. Eur. J. Radiol. 81(11), 3348–3353 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.