254
Views
26
CrossRef citations to date
0
Altmetric
Review

Role of biomarkers in the diagnosis and prognosis of acute kidney injury in patients with cardiorenal syndrome

, , &
Pages 657-667 | Published online: 10 Jan 2014

References

  • Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 52(19), 1527–1539 (2008).
  • Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit. Care Med. 34(7), 1913–1917 (2006).
  • Cruz DN, Bolgan I, Perazella MA et al.; North East Italian Prospective Hospital Renal Outcome Survey on Acute Kidney Injury (NEiPHROS-AKI) Investigators. North East Italian Prospective Hospital Renal Outcome Survey on Acute Kidney Injury (NEiPHROS-AKI): targeting the problem with the RIFLE criteria. Clin. J. Am. Soc. Nephrol. 2(3), 418–425 (2007).
  • Aghel A, Shrestha K, Mullens W, Borowski A, Tang WH. Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J. Card. Fail. 16(1), 49–54 (2010).
  • Mehta RL, Kellum JA, Shah SV et al.; Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care 11(2), R31 (2007).
  • Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 16(11), 3365–3370 (2005).
  • Bagshaw SM, George C, Bellomo R; ANZICS Database Management Committe. A comparison of the RIFLE and AKIN criteria for acute kidney injury in critically ill patients. Nephrol. Dial. Transplant. 23(5), 1569–1574 (2008).
  • Taub PR, Gabbai-Saldate P, Maisel A. Biomarkers of heart failure. Congest. Heart Fail. 16(Suppl. 1), S19–S24 (2010).
  • Uttenthal O. NGAL: a marker molecule for the distressed kidney? Clin. Lab. Int. 29, 39–41 (2005).
  • Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 63(5), 1714–1724 (2003).
  • Kieran NE, Doran PP, Connolly SB et al. Modification of the transcriptomic response to renal ischemia/reperfusion injury by lipoxin analog. Kidney Int. 64(2), 480–492 (2003).
  • Yuen PS, Jo SK, Holly MK, Hu X, Star RA. Ischemic and nephrotoxic acute renal failure are distinguished by their broad transcriptomic responses. Physiol. Genomics 25(3), 375–386 (2006).
  • Bolignano D, Basile G, Parisi P, Coppolino G, Nicocia G, Buemi M. Increased plasma neutrophil gelatinase-associated lipocalin levels predict mortality in elderly patients with chronic heart failure. Rejuvenation Res. 12(1), 7–14 (2009).
  • Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A; NGAL Meta-analysis Investigator Group. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 54(6), 1012–1024 (2009).
  • Haase M, Devarajan P, Haase-Fielitz A et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J. Am. Coll. Cardiol. 57(17), 1752–1761 (2011).
  • Yndestad A, Landrø L, Ueland T et al. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur. Heart J. 30(10), 1229–1236 (2009).
  • Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am. J. Kidney Dis. 40(2), 221–226 (2002).
  • Herget-Rosenthal S, Marggraf G, Hüsing J et al. Early detection of acute renal failure by serum cystatin C. Kidney Int. 66(3), 1115–1122 (2004).
  • Lassus J, Harjola VP. Cystatin C: a step forward in assessing kidney function and cardiovascular risk. Heart Fail. Rev. 17(2), 251–261 (2012).
  • Lassus J, Harjola VP, Sund R et al.; for the FINN-AKVA Study group. Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. Eur. Heart J. 28(15), 1841–1847 (2007).
  • Lassus JP, Nieminen MS, Peuhkurinen K et al.; FINN-AKVA study group. Markers of renal function and acute kidney injury in acute heart failure: definitions and impact on outcomes of the cardiorenal syndrome. Eur. Heart J. 31(22), 2791–2798 (2010).
  • Eriksen BO, Mathisen UD, Melsom T et al. Cystatin C is not a better estimator of GFR than plasma creatinine in the general population. Kidney Int. 78(12), 1305–1311 (2010).
  • Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am. J. Physiol. Renal Physiol. 290(2), F517–F529 (2006).
  • Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 62(1), 237–244 (2002).
  • Han WK, Waikar SS, Johnson A et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 73(7), 863–869 (2008).
  • Liangos O, Tighiouart H, Perianayagam MC et al. Comparative analysis of urinary biomarkers for early detection of acute kidney injury following cardiopulmonary bypass. Biomarkers 14(6), 423–431 (2009).
  • Damman K, Ng Kam Chuen MJ, MacFadyen RJ et al. Volume status and diuretic therapy in systolic heart failure and the detection of early abnormalities in renal and tubular function. J. Am. Coll. Cardiol. 57(22), 2233–2241 (2011).
  • Tschoeke SK, Oberholzer A, Moldawer LL. Interleukin-18: a novel prognostic cytokine in bacteria-induced sepsis. Crit. Care Med. 34(4), 1225–1233 (2006).
  • Melnikov VY, Faubel S, Siegmund B, Lucia MS, Ljubanovic D, Edelstein CL. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J. Clin. Invest. 110(8), 1083–1091 (2002).
  • Melnikov VY, Ecder T, Fantuzzi G et al. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J. Clin. Invest. 107(9), 1145–1152 (2001).
  • Miaolin C, Bo X, Song X et al. Clinical usefulness of novel biomarkers for the detection of acute kidney injury following elective cardiac surgery. Nephron Clin. Prac. 115, 66–72 (2010).
  • Parikh CR, Mishra J, Thiessen-Philbrook H et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 70(1), 199–203 (2006).
  • Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 73(9), 1008–1016 (2008).
  • Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J. Am. Soc. Nephrol. 16(10), 3046–3052 (2005).
  • Daniels LB, Maisel AS. Natriuretic peptides. J. Am. Coll. Cardiol. 50(25), 2357–2368 (2007).
  • de Cal M, Haapio M, Cruz DN et al. B-type natriuretic peptide in the critically ill with acute kidney injury. Int. J. Nephrol. 2011, 951629 (2011).
  • Maisel AS, Katz N, Hillege HL et al.; Acute Dialysis Quality Initiative Consensus Group. Biomarkers in kidney and heart disease. Nephrol. Dial. Transplant. 26(1), 62–74 (2011).
  • Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, Gejyo F. Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int. 60(5), 1645–1657 (2001).
  • Lorenzen JM, Hafer C, Faulhaber-Walter R et al. Osteopontin predicts survival in critically ill patients with acute kidney injury. Nephrol. Dial. Transplant. 26(2), 531–537 (2011).
  • Damman K, Masson S, Hillege HL et al. Clinical outcome of renal tubular damage in chronic heart failure. Eur. Heart J. 32(21), 2705–2712 (2011).
  • Tögel F, Isaac J, Hu Z, Weiss K, Westenfelder C. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int. 67(5), 1772–1784 (2005).
  • Van Balkom BWM, Pisitjun T, Verhaar MC, Knepper MA. Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases. Kidney Int. 80, 1138–1145 (2011).
  • Knepper MA, Pisitkun T. Exosomes in urine: who would have thought? Kidney Int. 72(9), 1043–1045 (2007).
  • Zhou H, Cheruvanky A, Hu X et al. Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int. 74(5), 613–621 (2008).
  • Hata N, Yokoyama S, Shinada T et al. Acute kidney injury and outcomes in acute decompensated heart failure: evaluation of the RIFLE criteria in an acutely ill heart failure population. Eur. J. Heart Fail. 12(1), 32–37 (2010).
  • Maisel AS, Mueller C, Fitzgerald R et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur. J. Heart Fail. 13(8), 846–851 (2011).
  • Damman K, Van Veldhuisen DJ, Navis G et al. Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart 96(16), 1297–1302 (2010).
  • Haase M, Bellomo R, Haase-Fielitz A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J. Am. Coll. Cardiol. 55(19), 2024–2033 (2010).
  • Bellomo R, Auriemma S, Fabbri A et al. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int. J. Artif. Organs 31(2), 166–178 (2008).
  • Vercaemst L. Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. J. Extra. Corpor. Technol. 40(4), 257–267 (2008).
  • Vermeulen Windsant IC, Snoeijs MG, Hanssen SJ et al. Hemolysis is associated with acute kidney injury during major aortic surgery. Kidney Int. 77(10), 913–920 (2010).
  • Ho J, Lucy M, Krokhin O et al. Mass spectrometry-based proteomic analysis of urine in acute kidney injury following cardiopulmonary bypass: a nested case–control study. Am. J. Kidney Dis. 53(4), 584–595 (2009).
  • Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood 106(5), 1864–1866 (2005).
  • Bernard AM, Vyskocil AA, Mahieu P, Lauwerys RR. Assessment of urinary retinol-binding protein as an index of proximal tubular injury. Clin. Chem. 33(6), 775–779 (1987).
  • Hofstra JM, Deegens JK, Steenbergen EJ, Wetzels JF. Urinary excretion of fatty acid-binding proteins in idiopathic membranous nephropathy. Nephrol. Dial. Transplant. 23(10), 3160–3165 (2008).
  • Portilla D, Dent C, Sugaya T et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int. 73(4), 465–472 (2008).
  • Negishi K, Noiri E, Doi K et al. Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury. Am. J. Pathol. 174(4), 1154–1159 (2009).
  • Ronco C, McCullough P, Anker SD. Cardio-renal syndromes: report from the consensus conference of the Acute Dialysis Quality Initiative. Eur. Heart J. 31(6), 703–711 (2010).
  • Murray PT, Devarajan P, Levey AS et al. A framework and key research questions in AKI diagnosis and staging in different environments. Clin. J. Am. Soc. Nephrol. 3(3), 864–868 (2008).
  • Ahlström A, Tallgren M, Peltonen S, Pettilä V. Evolution and predictive power of serum cystatin C in acute renal failure. Clin. Nephrol. 62(5), 344–350 (2004).
  • McIlroy DR, Wagener G, Lee HT. Biomarkers of acute kidney injury: an evolving domain. Anesthesiology 112(4), 998–1004 (2010).
  • Maisel AS, Krishnaswamy P, Nowak RM et al.; Breathing Not Properly Multinational Study Investigators. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 347(3), 161–167 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.